Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neuron ; 97(1): 125-138.e5, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29301098

RESUMO

Infections have been identified as possible risk factors for aging-related neurodegenerative diseases, but it remains unclear whether infection-related immune molecules have a causative role in neurodegeneration during aging. Here, we reveal an unexpected role of an epidermally expressed antimicrobial peptide, NLP-29 (neuropeptide-like protein 29), in triggering aging-associated dendrite degeneration in C. elegans. The age-dependent increase of nlp-29 expression is regulated by the epidermal tir-1/SARM-pmk-1/p38 MAPK innate immunity pathway. We further identify an orphan G protein-coupled receptor NPR-12 (neuropeptide receptor 12) acting in neurons as a receptor for NLP-29 and demonstrate that the autophagic machinery is involved cell autonomously downstream of NPR-12 to transduce degeneration signals. Finally, we show that fungal infections cause dendrite degeneration using a similar mechanism as in aging, through NLP-29, NPR-12, and autophagy. Our findings reveal an important causative role of antimicrobial peptides, their neuronal receptors, and the autophagy pathway in aging- and infection-associated dendrite degeneration.


Assuntos
Envelhecimento/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Dendritos/patologia , Degeneração Neural/metabolismo , Envelhecimento/imunologia , Envelhecimento/patologia , Animais , Autofagia/fisiologia , Caenorhabditis elegans , Dendritos/metabolismo , Micoses/imunologia , Micoses/patologia , Degeneração Neural/imunologia , Ratos , Receptores Acoplados a Proteínas G/metabolismo
2.
Elife ; 52016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27661253

RESUMO

Epidermal barrier epithelia form a first line of defense against the environment, protecting animals against infection and repairing physical damage. In C. elegans, death-associated protein kinase (DAPK-1) regulates epidermal morphogenesis, innate immunity and wound repair. Combining genetic suppressor screens and pharmacological tests, we find that DAPK-1 maintains epidermal tissue integrity through regulation of the microtubule (MT) cytoskeleton. dapk-1 epidermal phenotypes are suppressed by treatment with microtubule-destabilizing drugs and mimicked or enhanced by microtubule-stabilizing drugs. Loss of function in ptrn-1, the C. elegans member of the Patronin/Nezha/CAMSAP family of MT minus-end binding proteins, suppresses dapk-1 epidermal and innate immunity phenotypes. Over-expression of the MT-binding CKK domain of PTRN-1 triggers epidermal and immunity defects resembling those of dapk-1 mutants, and PTRN-1 localization is regulated by DAPK-1. DAPK-1 and PTRN-1 physically interact in co-immunoprecipitation experiments, and DAPK-1 itself undergoes MT-dependent transport. Our results uncover an unexpected interdependence of DAPK-1 and the microtubule cytoskeleton in maintenance of epidermal integrity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Quinases Associadas com Morte Celular/metabolismo , Epiderme/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Cicatrização , Animais , Caenorhabditis elegans/fisiologia , Ligação Proteica , Transporte Proteico
3.
Elife ; 42015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26339988

RESUMO

Axon injury triggers a series of changes in the axonal cytoskeleton that are prerequisites for effective axon regeneration. In Caenorhabditis elegans the signaling protein Exchange Factor for ARF-6 (EFA-6) is a potent intrinsic inhibitor of axon regrowth. Here we show that axon injury triggers rapid EFA-6-dependent inhibition of axonal microtubule (MT) dynamics, concomitant with relocalization of EFA-6. EFA-6 relocalization and axon regrowth inhibition require a conserved 18-aa motif in its otherwise intrinsically disordered N-terminal domain. The EFA-6 N-terminus binds the MT-associated proteins TAC-1/Transforming-Acidic-Coiled-Coil, and ZYG-8/Doublecortin-Like-Kinase, both of which are required for regenerative growth cone formation, and which act downstream of EFA-6. After injury TAC-1 and EFA-6 transiently relocalize to sites marked by the MT minus end binding protein PTRN-1/Patronin. We propose that EFA-6 acts as a bifunctional injury-responsive regulator of axonal MT dynamics, acting at the cell cortex in the steady state and at MT minus ends after injury.


Assuntos
Axônios/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Ciclo Celular/metabolismo , Microtúbulos/metabolismo , Animais , Regeneração
4.
Artigo em Inglês | MEDLINE | ID: mdl-26736672

RESUMO

Registration is difficult when images to be registered contain sparse but large-valued differences. We present a method for robust registration that ignores some fraction of large differences, while constraining the sparseness of these errors. We apply the method to stabilize microscopy videos of C. elegans tissues, in which bright moving filaments and tissue wounding appear as sparse large-valued differences. We demonstrate the advantage of the method on both synthetic and real data compared to state-of-the-art methods.


Assuntos
Processamento de Imagem Assistida por Computador , Algoritmos , Animais , Caenorhabditis elegans , Microscopia de Fluorescência
5.
Cell Rep ; 9(3): 874-83, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25437544

RESUMO

Precise regulation of microtubule (MT) dynamics is increasingly recognized as a critical determinant of axon regeneration. In contrast to developing neurons, mature axons exhibit noncentrosomal microtubule nucleation. The factors regulating noncentrosomal MT architecture in axon regeneration remain poorly understood. We report that PTRN-1, the C. elegans member of the Patronin/Nezha/calmodulin- and spectrin-associated protein (CAMSAP) family of microtubule minus-end-binding proteins, is critical for efficient axon regeneration in vivo. ptrn-1-null mutants display generally normal developmental axon outgrowth but significantly impaired regenerative regrowth after laser axotomy. Unexpectedly, mature axons in ptrn-1 mutants display elevated numbers of dynamic axonal MTs before and after injury, suggesting that PTRN-1 inhibits MT dynamics. The CKK domain of PTRN-1 is necessary and sufficient for its functions in axon regeneration and MT dynamics and appears to stabilize MTs independent of minus-end localization. Whereas in developing neurons, PTRN-1 inhibits activity of the DLK-1 mitogen-activated protein kinase (MAPK) cascade, we find that, in regeneration, PTRN-1 and DLK-1 function together to promote axonal regrowth.


Assuntos
Axônios/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Regeneração , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/química , Proteínas Associadas aos Microtúbulos/química , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Mutação , Polimerização , Ligação Proteica , Estrutura Terciária de Proteína , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Relação Estrutura-Atividade , Regulação para Cima
6.
Apoptosis ; 19(2): 392-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24242918

RESUMO

The death associated protein kinases (DAPK) are a phylogenetically widespread family of calcium-regulated serine/threonine kinases, initially identified from their roles in apoptosis. Subsequent studies, principally in vertebrate cells or models, have elucidated the functions of the DAPK family in autophagy and tumor suppression. Invertebrate genetic model organisms such as Drosophila and C. elegans have revealed additional functions for DAPK and related kinases. In the nematode C. elegans, the sole DAPK family member DAPK-1 positively regulates starvation-induced autophagy. Genetic analysis in C. elegans has revealed that DAPK-1 also acts as a negative regulator of epithelial innate immune responses in the epidermis. This negative regulatory role for DAPK in innate immunity may be analogous to the roles of mammalian DAPK in inflammatory responses.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Proteínas Quinases Associadas com Morte Celular/metabolismo , Actinas/metabolismo , Animais , Autofagia , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/imunologia , Proteínas Quinases Associadas com Morte Celular/imunologia , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/crescimento & desenvolvimento , Células Epidérmicas , Epiderme/enzimologia , Epiderme/crescimento & desenvolvimento , Epitélio/enzimologia , Epitélio/crescimento & desenvolvimento , Humanos , Imunidade Inata , Filogenia , Especificidade da Espécie , Vertebrados , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA