Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 184(9): 2430-2440.e16, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33784496

RESUMO

Genomically minimal cells, such as JCVI-syn3.0, offer a platform to clarify genes underlying core physiological processes. Although this minimal cell includes genes essential for population growth, the physiology of its single cells remained uncharacterized. To investigate striking morphological variation in JCVI-syn3.0 cells, we present an approach to characterize cell propagation and determine genes affecting cell morphology. Microfluidic chemostats allowed observation of intrinsic cell dynamics that result in irregular morphologies. A genome with 19 genes not retained in JCVI-syn3.0 generated JCVI-syn3A, which presents morphology similar to that of JCVI-syn1.0. We further identified seven of these 19 genes, including two known cell division genes, ftsZ and sepF, a hydrolase of unknown substrate, and four genes that encode membrane-associated proteins of unknown function, which are required together to restore a phenotype similar to that of JCVI-syn1.0. This result emphasizes the polygenic nature of cell division and morphology in a genomically minimal cell.


Assuntos
Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , DNA Bacteriano/genética , Genoma Bacteriano , Mycoplasma/genética , Biologia Sintética/métodos , Proteínas de Bactérias/antagonistas & inibidores , Sistemas CRISPR-Cas , Engenharia Genética
2.
Sci Rep ; 6: 30714, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27489041

RESUMO

Bacteria are indispensable for the study of fundamental molecular biology processes due to their relatively simple gene and genome architecture. The ability to engineer bacterial chromosomes is quintessential for understanding gene functions. Here we demonstrate the engineering of the small-ribosomal subunit (16S) RNA of Mycoplasma mycoides, by combining the CRISPR/Cas9 system and the yeast recombination machinery. We cloned the entire genome of M. mycoides in yeast and used constitutively expressed Cas9 together with in vitro transcribed guide-RNAs to introduce engineered 16S rRNA genes. By testing the function of the engineered 16S rRNA genes through genome transplantation, we observed surprising resilience of this gene to addition of genetic elements or helix substitutions with phylogenetically-distant bacteria. While this system could be further used to study the function of the 16S rRNA, one could envision the "simple" M. mycoides genome being used in this setting to study other genetic structures and functions to answer fundamental questions of life.


Assuntos
Engenharia Genética/métodos , Mycoplasma mycoides/genética , RNA Ribossômico 16S/genética , Sistemas CRISPR-Cas , Clonagem Molecular , Genoma Bacteriano , Filogenia , RNA Bacteriano/genética , Saccharomyces cerevisiae/genética
3.
Science ; 351(6280): aad6253, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27013737

RESUMO

We used whole-genome design and complete chemical synthesis to minimize the 1079-kilobase pair synthetic genome of Mycoplasma mycoides JCVI-syn1.0. An initial design, based on collective knowledge of molecular biology combined with limited transposon mutagenesis data, failed to produce a viable cell. Improved transposon mutagenesis methods revealed a class of quasi-essential genes that are needed for robust growth, explaining the failure of our initial design. Three cycles of design, synthesis, and testing, with retention of quasi-essential genes, produced JCVI-syn3.0 (531 kilobase pairs, 473 genes), which has a genome smaller than that of any autonomously replicating cell found in nature. JCVI-syn3.0 retains almost all genes involved in the synthesis and processing of macromolecules. Unexpectedly, it also contains 149 genes with unknown biological functions. JCVI-syn3.0 is a versatile platform for investigating the core functions of life and for exploring whole-genome design.


Assuntos
DNA Bacteriano/síntese química , Genes Sintéticos/fisiologia , Genoma Bacteriano , Mycoplasma mycoides/genética , Células Artificiais , Códon/genética , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Genes Essenciais , Genes Sintéticos/genética , Mutagênese , Proteínas/genética , RNA/genética , Biologia Sintética
4.
Biol Proced Online ; 17: 6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774095

RESUMO

BACKGROUND: We have previously established technologies enabling us to engineer the Mycoplasma mycoides genome while cloned in the yeast Saccharomyces cerevisiae, followed by genome transplantation into Mycoplasma capricolum recipient cells to produce M. mycoides with an altered genome. To expand the toolbox for genomic modifications, we designed a strategy based on the Cre/loxP-based Recombinase-Mediated Cassette Exchange (RMCE) system for functional genomics analyses. RESULTS: In this paper, we demonstrated replacement of an approximately 100 kb DNA segment of the M. mycoides genome with a synthetic DNA counterpart in two orientations. The function of the altered genomes was then validated by genome transplantation and phenotypic characterization of the transplanted cells. CONCLUSION: This method offers an easy and efficient way to manipulate the M. mycoides genome and will be a valuable tool for functional genomic studies, such as genome organization and minimization.

5.
Genome Res ; 25(3): 435-44, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25654978

RESUMO

The availability of genetically tractable organisms with simple genomes is critical for the rapid, systems-level understanding of basic biological processes. Mycoplasma bacteria, with the smallest known genomes among free-living cellular organisms, are ideal models for this purpose, but the natural versions of these cells have genome complexities still too great to offer a comprehensive view of a fundamental life form. Here we describe an efficient method for reducing genomes from these organisms by identifying individually deletable regions using transposon mutagenesis and progressively clustering deleted genomic segments using meiotic recombination between the bacterial genomes harbored in yeast. Mycoplasmal genomes subjected to this process and transplanted into recipient cells yielded two mycoplasma strains. The first simultaneously lacked eight singly deletable regions of the genome, representing a total of 91 genes and ∼ 10% of the original genome. The second strain lacked seven of the eight regions, representing 84 genes. Growth assay data revealed an absence of genetic interactions among the 91 genes under tested conditions. Despite predicted effects of the deletions on sugar metabolism and the proteome, growth rates were unaffected by the gene deletions in the seven-deletion strain. These results support the feasibility of using single-gene disruption data to design and construct viable genomes lacking multiple genes, paving the way toward genome minimization. The progressive clustering method is expected to be effective for the reorganization of any mega-sized DNA molecules cloned in yeast, facilitating the construction of designer genomes in microbes as well as genomic fragments for genetic engineering of higher eukaryotes.


Assuntos
Bactérias/genética , Transferência Genética Horizontal , Genoma Bacteriano , Família Multigênica , Deleção de Sequência , Leveduras/genética , Elementos de DNA Transponíveis
6.
BMC Genomics ; 15: 1180, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25539750

RESUMO

BACKGROUND: With the development of several new technologies using synthetic biology, it is possible to engineer genetically intractable organisms including Mycoplasma mycoides subspecies capri (Mmc), by cloning the intact bacterial genome in yeast, using the host yeast's genetic tools to modify the cloned genome, and subsequently transplanting the modified genome into a recipient cell to obtain mutant cells encoded by the modified genome. The recently described tandem repeat coupled with endonuclease cleavage (TREC) method has been successfully used to generate seamless deletions and point mutations in the mycoplasma genome using the yeast DNA repair machinery. But, attempts to knock-in genes in some cases have encountered a high background of transformation due to maintenance of unwanted circularization of the transforming DNA, which contains possible autonomously replicating sequence (ARS) activity. To overcome this issue, we incorporated a split marker system into the TREC method, enabling seamless gene knock-in with high efficiency. The modified method is called TREC-assisted gene knock-in (TREC-IN). Since a gene to be knocked-in is delivered by a truncated non-functional marker, the background caused by an incomplete integration is essentially eliminated. RESULTS: In this paper, we demonstrate applications of the TREC-IN method in gene complementation and genome minimization studies in Mmc. In the first example, the Mmc dnaA gene was seamlessly replaced by an orthologous gene, which shares a high degree of identity at the nucleotide level with the original Mmc gene, with high efficiency and low background. In the minimization example, we replaced an essential gene back into the genome that was present in the middle of a cluster of non-essential genes, while deleting the non-essential gene cluster, again with low backgrounds of transformation and high efficiency. CONCLUSION: Although we have demonstrated the feasibility of TREC-IN in gene complementation and genome minimization studies in Mmc, the applicability of TREC-IN ranges widely. This method proves to be a valuable genetic tool that can be extended for genomic engineering in other genetically intractable organisms, where it may be implemented in elucidating specific metabolic pathways and in rationale vaccine design.


Assuntos
Clonagem Molecular , Técnicas de Introdução de Genes , Genoma Fúngico , Genômica , Leveduras/genética , Clonagem Molecular/métodos , Ordem dos Genes , Genes Fúngicos , Vetores Genéticos/genética , Genômica/métodos , Mycoplasma mycoides/genética , Saccharomyces cerevisiae/genética
7.
J Biol Eng ; 7(1): 30, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24325901

RESUMO

BACKGROUND: Synthetic genomic approaches offer unique opportunities to use powerful yeast and Escherichia coli genetic systems to assemble and modify chromosome-sized molecules before returning the modified DNA to the target host. For example, the entire 1 Mb Mycoplasma mycoides chromosome can be stably maintained and manipulated in yeast before being transplanted back into recipient cells. We have previously demonstrated that cloning in yeast of large (> ~ 150 kb), high G + C (55%) prokaryotic DNA fragments was improved by addition of yeast replication origins every ~100 kb. Conversely, low G + C DNA is stable (up to at least 1.8 Mb) without adding supplemental yeast origins. It has not been previously tested whether addition of yeast replication origins similarly improves the yeast-based cloning of large (>150 kb) eukaryotic DNA with moderate G + C content. The model diatom Phaeodactylum tricornutum has an average G + C content of 48% and a 27.4 Mb genome sequence that has been assembled into chromosome-sized scaffolds making it an ideal test case for assembly and maintenance of eukaryotic chromosomes in yeast. RESULTS: We present a modified chromosome assembly technique in which eukaryotic chromosomes as large as ~500 kb can be assembled from cloned ~100 kb fragments. We used this technique to clone fragments spanning P. tricornutum chromosomes 25 and 26 and to assemble these fragments into single, chromosome-sized molecules. We found that addition of yeast replication origins improved the cloning, assembly, and maintenance of the large chromosomes in yeast. Furthermore, purification of the fragments to be assembled by electroelution greatly increased assembly efficiency. CONCLUSIONS: Entire eukaryotic chromosomes can be successfully cloned, maintained, and manipulated in yeast. These results highlight the improvement in assembly and maintenance afforded by including yeast replication origins in eukaryotic DNA with moderate G + C content (48%). They also highlight the increased efficiency of assembly that can be achieved by purifying fragments before assembly.

8.
Nucleic Acids Res ; 40(20): 10375-83, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22941652

RESUMO

Marine cyanobacteria of the genus Prochlorococcus represent numerically dominant photoautotrophs residing throughout the euphotic zones in the open oceans and are major contributors to the global carbon cycle. Prochlorococcus has remained a genetically intractable bacterium due to slow growth rates and low transformation efficiencies using standard techniques. Our recent successes in cloning and genetically engineering the AT-rich, 1.1 Mb Mycoplasma mycoides genome in yeast encouraged us to explore similar methods with Prochlorococcus. Prochlorococcus MED4 has an AT-rich genome, with a GC content of 30.8%, similar to that of Saccharomyces cerevisiae (38%), and contains abundant yeast replication origin consensus sites (ACS) evenly distributed around its 1.66 Mb genome. Unlike Mycoplasma cells, which use the UGA codon for tryptophane, Prochlorococcus uses the standard genetic code. Despite this, we observed no toxic effects of several partial and 15 whole Prochlorococcus MED4 genome clones in S. cerevisiae. Sequencing of a Prochlorococcus genome purified from yeast identified 14 single base pair missense mutations, one frameshift, one single base substitution to a stop codon and one dinucleotide transversion compared to the donor genomic DNA. We thus provide evidence of transformation, replication and maintenance of this 1.66 Mb intact bacterial genome in S. cerevisiae.


Assuntos
Genoma Bacteriano , Prochlorococcus/genética , Clonagem Molecular , Genes Bacterianos , Mutação , Origem de Replicação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Análise de Sequência de DNA
9.
ACS Synth Biol ; 1(7): 267-73, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-23651249

RESUMO

The ability to assemble large pieces of prokaryotic DNA by yeast recombination has great application in synthetic biology, but cloning large pieces of high G+C prokaryotic DNA in yeast can be challenging. Additional considerations in cloning large pieces of high G+C DNA in yeast may be related to toxic genes, to the size of the DNA, or to the absence of yeast origins of replication within the sequence. As an example of our ability to clone high G+C DNA in yeast, we chose to work with Synechococcus elongatus PCC 7942, which has an average G+C content of 55%. We determined that no regions of the chromosome are toxic to yeast and that S. elongatus DNA fragments over ~200 kb are not stably maintained. DNA constructs with a total size under 200 kb could be readily assembled, even with 62 kb of overlapping sequence between pieces. Addition of yeast origins of replication throughout allowed us to increase the total size of DNA that could be assembled to at least 454 kb. Thus, cloning strategies utilizing yeast recombination with large, high G+C prokaryotic sequences should include yeast origins of replication as a part of the design process.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Composição de Bases , Cromossomos Artificiais de Levedura/química , Cromossomos Artificiais de Levedura/genética , Clonagem Molecular , DNA Recombinante/química , DNA Recombinante/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Biologia Sintética
10.
Nat Protoc ; 6(1): 89-96, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21212778

RESUMO

Circular yeast artificial chromosomes (YACs) provide significant advantages for cloning and manipulating large segments of genomic DNA in Saccharomyces cerevisiae. However, it has been difficult to exploit these advantages, because circular YACs are difficult to isolate and purify. Here we describe a method for purification of large circular YACs that is more reliable compared with previously described protocols. This method has been used to purify YACs up to 600 kb in size. The purified YAC DNA is suitable for restriction enzyme digestion, DNA sequencing and functional studies. For example, YACs carrying full-size genes can be purified from yeast and used for transfection into mammalian cells or for the construction of a synthetic genome that can be used to produce a synthetic cell. This method for isolating high-quality YAC DNA in microgram quantities should be valuable for functional and synthetic genomic studies. The entire protocol takes ∼3 d to complete.


Assuntos
Cromossomos Artificiais de Levedura/química , Genômica/métodos , Saccharomyces cerevisiae/genética , Técnicas de Cultura de Células , Clonagem Molecular/métodos , DNA Fúngico/isolamento & purificação
11.
Science ; 329(5987): 52-6, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20488990

RESUMO

We report the design, synthesis, and assembly of the 1.08-mega-base pair Mycoplasma mycoides JCVI-syn1.0 genome starting from digitized genome sequence information and its transplantation into a M. capricolum recipient cell to create new M. mycoides cells that are controlled only by the synthetic chromosome. The only DNA in the cells is the designed synthetic DNA sequence, including "watermark" sequences and other designed gene deletions and polymorphisms, and mutations acquired during the building process. The new cells have expected phenotypic properties and are capable of continuous self-replication.


Assuntos
Bioengenharia , Engenharia Genética , Genoma Bacteriano , Mycoplasma capricolum/genética , Mycoplasma mycoides/genética , Proteínas de Bactérias/análise , Sequência de Bases , Clonagem Molecular , DNA Bacteriano/síntese química , DNA Bacteriano/genética , Escherichia coli/genética , Deleção de Genes , Genes Bacterianos , Dados de Sequência Molecular , Mycoplasma mycoides/crescimento & desenvolvimento , Mycoplasma mycoides/fisiologia , Mycoplasma mycoides/ultraestrutura , Fenótipo , Plasmídeos , Reação em Cadeia da Polimerase , Polimorfismo Genético , Saccharomyces cerevisiae/genética , Transformação Bacteriana
12.
Nucleic Acids Res ; 38(8): 2570-6, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20228123

RESUMO

The complete synthetic Mycoplasma genitalium genome ( approximately 583 kb) has been assembled and cloned as a circular plasmid in the yeast Saccharomyces cerevisiae. Attempts to engineer the cloned genome by standard genetic methods involving the URA3/5-fluoroorotic acid (5-FOA) counter-selection have shown a high background of 5-FOA resistant clones derived from spontaneous deletions of the bacterial genome maintained in yeast. Here, we report a method that can seamlessly modify the bacterial genome in yeast with high efficiency. This method requires two sequential homologous recombination events. First, the target region is replaced with a mutagenesis cassette that consists of a knock-out CORE (an18-bp I-SceI recognition site, the SCEI gene under the control of the GAL1 promoter, and the URA3 marker) and a DNA fragment homologous to the sequence upstream of the target site. The replacement generates tandem repeat sequences flanking the CORE. Second, galactose induces the expression of I-SceI, which generates a double-strand break (DSB) at the recognition site. This DSB promotes intra-molecular homologous recombination between the repeat sequences, and leads to an excision of the CORE. As a result, a seamless modification is generated. This method can be adapted for a variety of genomic modifications and may provide an important tool to modify and design natural or synthetic genomes propagated in yeast.


Assuntos
Engenharia Genética/métodos , Genoma Bacteriano , Mycoplasma genitalium/genética , Saccharomyces cerevisiae/genética , Sequências de Repetição em Tandem , Clonagem Molecular , Desoxirribonucleases de Sítio Específico do Tipo II , Recombinação Genética , Proteínas de Saccharomyces cerevisiae , Deleção de Sequência
13.
Nucleic Acids Res ; 38(8): 2558-69, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20211840

RESUMO

Most microbes have not been cultured, and many of those that are cultivatable are difficult, dangerous or expensive to propagate or are genetically intractable. Routine cloning of large genome fractions or whole genomes from these organisms would significantly enhance their discovery and genetic and functional characterization. Here we report the cloning of whole bacterial genomes in the yeast Saccharomyces cerevisiae as single-DNA molecules. We cloned the genomes of Mycoplasma genitalium (0.6 Mb), M. pneumoniae (0.8 Mb) and M. mycoides subspecies capri (1.1 Mb) as yeast circular centromeric plasmids. These genomes appear to be stably maintained in a host that has efficient, well-established methods for DNA manipulation.


Assuntos
Clonagem Molecular/métodos , Genoma Bacteriano , Mycoplasma/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , Diploide , Vetores Genéticos/química , Dados de Sequência Molecular , Mycoplasma genitalium/genética , Mycoplasma mycoides/genética , Mycoplasma pneumoniae/genética , Recombinação Genética
14.
J Mol Evol ; 69(4): 360-71, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19841849

RESUMO

The common understanding of the function of RecD, as derived predominantly from studies in Escherichia coli, is that RecD is one of three enzymes in the RecBCD double-stranded break repair DNA recombination complex. However, comparative genomics has revealed that many organisms possess a recD gene even though the other members of the complex, recB and recC, are not present. Further, bioinformatic analyses have shown that there is substantial sequence dissimilarity between recD genes associated with recB and recC (recD1), and those that are not associated with recBC (recD2). Deinococcus radiodurans, known for its extraordinary DNA repair capability, is one such organism that does not possess either recB or recC, and yet does possess a recD gene. The recD of D. radiodurans was deleted and this mutant was shown to have a capacity to repair double-stranded DNA breaks equivalent to wild-type. The phylogenetic history of recD was studied using a dataset of 120 recD genes from 91 fully sequenced species. The analysis focused upon the role of gene duplication and functional genomic context in the evolution of recD2, which appears to have undergone numerous independent events resulting in duplicate recD2 genes. The role of RecD as part of the RecBCD complex appears to have a divergence from an earlier ancestral RecD function still preserved in many species including D. radiodurans.


Assuntos
Evolução Molecular , Exodesoxirribonuclease V/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Deleção de Genes , Peróxido de Hidrogênio/farmacologia , Hidroxiureia/farmacologia , Funções Verossimilhança , Filogenia , Radiação Ionizante
15.
Science ; 325(5948): 1693-6, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19696314

RESUMO

We recently reported the chemical synthesis, assembly, and cloning of a bacterial genome in yeast. To produce a synthetic cell, the genome must be transferred from yeast to a receptive cytoplasm. Here we describe methods to accomplish this. We cloned a Mycoplasma mycoides genome as a yeast centromeric plasmid and then transplanted it into Mycoplasma capricolum to produce a viable M. mycoides cell. While in yeast, the genome was altered by using yeast genetic systems and then transplanted to produce a new strain of M. mycoides. These methods allow the construction of strains that could not be produced with genetic tools available for this bacterium.


Assuntos
Clonagem Molecular , Técnicas de Transferência de Genes , Engenharia Genética , Genoma Bacteriano , Mycoplasma capricolum/genética , Mycoplasma mycoides/genética , Saccharomyces cerevisiae/genética , Centrômero , Metilação de DNA , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo III/genética , Mycoplasma mycoides/crescimento & desenvolvimento , Mycoplasma mycoides/isolamento & purificação , Plasmídeos , Análise de Sequência de DNA , Deleção de Sequência , Transformação Bacteriana
16.
Nat Methods ; 6(5): 343-5, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19363495

RESUMO

We describe an isothermal, single-reaction method for assembling multiple overlapping DNA molecules by the concerted action of a 5' exonuclease, a DNA polymerase and a DNA ligase. First we recessed DNA fragments, yielding single-stranded DNA overhangs that specifically annealed, and then covalently joined them. This assembly method can be used to seamlessly construct synthetic and natural genes, genetic pathways and entire genomes, and could be a useful molecular engineering tool.


Assuntos
DNA Recombinante/biossíntese , DNA Recombinante/química , Engenharia Genética/métodos , Clonagem Molecular/métodos , DNA Ligases/metabolismo , DNA Circular/biossíntese , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/genética , Genes/genética , Técnicas Genéticas , Vetores Genéticos/biossíntese , Genoma/genética , Mycoplasma genitalium/genética , Fosfodiesterase I/metabolismo , Plasmídeos/biossíntese
17.
J Biol Chem ; 283(44): 30216-24, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18723846

RESUMO

Eukaryotic DNA replication requires the assembly of multiprotein pre-replication complexes (pre-RCs) at chromosomal origins of DNA replication. Here we describe the interactions of highly purified Schizosaccharomyces pombe pre-RC components, SpORC, SpCdc18, and SpCdt1, with each other and with ars1 origin DNA. We show that SpORC binds DNA in at least two steps. The first step likely involves electrostatic interactions between the AT-hook motifs of SpOrc4 and AT tracts in ars1 DNA and results in the formation of a salt-sensitive complex. In the second step, the salt-sensitive complex is slowly converted to a salt-stable complex that involves additional interactions between SpORC and DNA. Binding of SpORC to ars1 DNA is facilitated by negative supercoiling and is accompanied by changes in DNA topology, suggesting that SpORC-DNA complexes contain underwound or negatively writhed DNA. Purified human origin recognition complex (ORC) induces similar topological changes in origin DNA, indicating that this property of ORC is conserved in eukaryotic evolution and plays an important role in ORC function. We also show that SpCdc18 and SpCdt1 form a binary complex that has greater affinity for DNA than either protein alone. In addition, both proteins contribute significantly to the stability of the initial SpORC-DNA complex and enhance the SpORC-dependent topology changes in origin DNA. Thus, the formation of stable protein-DNA complexes at S. pombe origins of replication involves binary interactions among all three proteins, as well as interactions of both SpORC and SpCdt1-SpCdc18 with origin DNA. These findings demonstrate that SpORC is not the sole determinant of origin recognition.


Assuntos
DNA/genética , Complexo de Reconhecimento de Origem , Schizosaccharomyces/genética , Motivos de Aminoácidos , Animais , Linhagem Celular , DNA/química , Replicação do DNA , DNA Topoisomerases Tipo I/metabolismo , DNA Super-Helicoidal/metabolismo , Insetos , Modelos Biológicos , Ligação Proteica , Origem de Replicação , Sais/farmacologia , Schizosaccharomyces/metabolismo
18.
Proc Natl Acad Sci U S A ; 102(2): 337-42, 2005 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-15623550

RESUMO

Origins of DNA replication in Schizosaccharomyces pombe lack a specific consensus sequence analogous to the Saccharomyces cerevisiae autonomously replicating sequence (ARS) consensus, raising the question of how they are recognized by the replication machinery. Because all well characterized S. pombe origins are located in intergenic regions, we analyzed the sequence properties and biological activity of such regions. The AT content of intergenes is very high ( approximately 70%), and runs of A's or T's occur with a significantly greater frequency than expected. Additionally, the two DNA strands in intergenes display compositional asymmetry that strongly correlates with the direction of transcription of flanking genes. Importantly, the sequence properties of known S. pombe origins of DNA replication are similar to those of intergenes in general. In functional studies, we assayed the in vivo origin activity of 26 intergenes in a 68-kb region of S. pombe chromosome 2. We also assayed the origin activity of sets of randomly chosen intergenes with the same length or AT content. Our data demonstrate that at least half of intergenes have potential origin activity and that the relative ability of an intergene to function as an origin is governed primarily by AT content and length. We propose a stochastic model for initiation of DNA replication in the fission yeast. In this model, the number of AT tracts in a given sequence is the major determinant of its probability of binding SpORC and serving as a replication origin. A similar model may explain some features of origins of DNA replication in metazoans.


Assuntos
Genoma Fúngico , Origem de Replicação , Schizosaccharomyces/genética , Composição de Bases , Replicação do DNA , Processos Estocásticos
19.
Nucleic Acids Res ; 32(6): 2031-8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15064363

RESUMO

Viruses are intracellular parasites that must use the host machinery to multiply. Identification of the host factors that perform essential functions in viral replication is thus of crucial importance to the understanding of virus-host interactions. Here we describe Ded1p, a highly conserved DExD/H-box translation factor, as a possible host factor recruited by the yeast L-A double-stranded RNA (dsRNA) virus. We found that Ded1p interacts specifically and strongly with Gag, the L-A virus coat protein. Further analysis revealed that Ded1p interacts with the L-A virus in an RNA-independent manner and, as a result, L-A particles can be affinity purified via this interaction. The affinity-purified L-A particles are functional, as they are capable of synthesizing RNA in vitro. Critically, using purified L-A particles, we demonstrated that Ded1p specifically promotes L-A dsRNA replication by accelerating the rate of negative-strand RNA synthesis in vitro. In light of these data, we suggest that Ded1p may be a part of the long sought after activity shown to promote yeast viral dsRNA replication. This and the fact that Ded1p is also required for translating brome mosaic virus RNA2 in yeast thus raise the intriguing possibility that Ded1p is one of the key host factors favored by several evolutionarily related RNA viruses, including the human hepatitis C virus.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Fúngicas/fisiologia , RNA Helicases/fisiologia , RNA Viral/biossíntese , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/virologia , Totivirus/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/farmacologia , Sequência Conservada , RNA Helicases DEAD-box , Proteínas Fúngicas/química , Proteínas Fúngicas/farmacologia , Produtos do Gene gag/metabolismo , RNA Helicases/química , RNA Helicases/farmacologia , Totivirus/metabolismo , Totivirus/ultraestrutura , Transcrição Gênica , Vírion/genética , Vírion/metabolismo , Vírion/ultraestrutura , Replicação Viral
20.
J Biol Chem ; 277(19): 16920-7, 2002 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-11850415

RESUMO

The origin recognition complex (ORC) plays a central role in the initiation of DNA replication in eukaryotic cells. It interacts with origins of DNA replication in chromosomal DNA and recruits additional replication proteins to form functional initiation complexes. These processes have not been well characterized at the biochemical level except in the case of Saccharomyces cerevisiae ORC. We report here the expression, purification, and initial characterization of Schizosaccharomyces pombe ORC (SpORC) containing six recombinant subunits. Purified SpORC binds efficiently to the ars1 origin of DNA replication via the essential Nterminal domain of the SpOrc4 subunit which contains nine AT-hook motifs. Competition binding experiments demonstrated that SpORC binds preferentially to DNA molecules rich in AT-tracts, but does not otherwise exhibit a high degree of sequence specificity. The complex is capable of binding to multiple sites within the ars1 origin of DNA replication with similar affinities, indicating that the sequence requirements for origin recognition in S. pombe are significantly less stringent than in S. cerevisiae. We have also demonstrated that SpORC interacts directly with Cdc18p, an essential fission yeast initiation protein, and recruits it to the ars1 origin in vitro. Recruitment of Cdc18p to chromosomal origins is a likely early step in the initiation of DNA replication in vivo. These data indicate that the purified recombinant SpORC retains at least two of its primary biological functions and that it will be useful for the eventual reconstitution of the initiation reaction with purified proteins.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Clonagem Molecular , DNA/metabolismo , Insetos , Complexo de Reconhecimento de Origem , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Proteínas de Schizosaccharomyces pombe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA