Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Materials (Basel) ; 16(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37176364

RESUMO

This study investigated the impact of material properties of epoxy molding compounds on wafer warpage in fan-out wafer-level packaging. As there is currently a lack of comprehensive discussion on the various material property parameters of EMC materials, it is essential to identify the critical influencing factors and quantify the effects of each parameter on wafer warpage. The material properties include Young's modulus of the epoxy molding compound before and after the glass transition temperature (Tg) range of 25-35 °C (EL) and 235-260 °C (EH), coefficient of thermal expansion (α1, α2), and the temperature change (∆T) between EL and EH. Results show that, within the range of extreme values of material properties, EL and α1 are the critical factors that affect wafer warpage during the decarrier process in fan-out packaging. α1 has a more significant impact on wafer warpage compared with EL. EH, α2, Tg, and ∆T have little influence on wafer warpage. Additionally, the study identified the optimized material property of the epoxy molding compound that can reduce the maximum wafer warpage in the X and Y directions from initial values of 7.34 mm and 7.189 mm to 0.545 mm and 0.45 mm, respectively, resulting in a reduction of wafer warpage of 92.58% (X direction) and 93.74% (Y direction). Thus, this study proposes an approach for evaluating the impact of material properties of epoxy molding compounds on wafer warpage in fan-out wafer-level packaging. The approach aims to address the issue of excessive wafer warpage due to material variation and to provide criteria for selecting appropriate epoxy molding compounds to enhance process yield in packaging production lines.

2.
Materials (Basel) ; 15(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35009468

RESUMO

This study successfully established a strip warpage simulation model of the flip-chip process and investigated the effects of structural design and process (molding, post-mold curing, pretreatment, and ball mounting) on strip warpage. The errors between simulated and experimental values were found to be less than 8%. Taguchi analysis was employed to identify the key factors affecting strip warpage, which were discovered to be die thickness and substrate thickness, followed by mold compound thickness and molding temperature. Although a greater die thickness and mold compound thickness reduce the strip warpage, they also substantially increase the overall strip thickness. To overcome this problem, design criteria are proposed, with the neutral axis of the strip structure located on the bump. The results obtained using the criteria revealed that the strip warpage and overall strip thickness are effectively reduced. In summary, the proposed model can be used to evaluate the effect of structural design and process parameters on strip warpage and can provide strip design guidelines for reducing the amount of strip warpage and meeting the requirements for light, thin, and short chips on the production line. In addition, the proposed guidelines can accelerate the product development cycle and improve product quality with reduced development costs.

3.
Sensors (Basel) ; 15(2): 3975-87, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25671513

RESUMO

This research aims at developing a flexible strain module applied to the strengthening of back muscles. Silver films were sputtered onto flexible substrates to produce a flexible sensor. Assuming that back muscle elongation is positively correlated with the variations in skin surface length, real-time resistance changes exhibited by the sensor during simulated training sessions were measured. The results were used to identify the relationship between resistance change of sensors and skin surface stretch. In addition, muscle length changes from ultrasound images were used to determine the feasibility of a proof of concept sensor. Furthermore, this module is capable of detecting large muscle contractions, some of which may be undesirable for the prescribed training strategy. Therefore, the developed module can facilitate real-time assessments of the movement accuracy of users during training, and the results are instantly displayed on a screen. People using the developed training system can immediately adjust their posture to the appropriate position. Thus, the training mechanism can be constructed to help user improve the efficiency of back muscle strengthening.


Assuntos
Terapia por Exercício , Exercícios de Alongamento Muscular/instrumentação , Músculo Esquelético/fisiologia , Tecnologia de Sensoriamento Remoto , Músculos do Dorso/fisiologia , Eletromiografia , Humanos
4.
Sensors (Basel) ; 12(12): 17094-111, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23235449

RESUMO

This paper develops the technologies of mechanical characterization of CMOS-MEMS devices, and presents a robust algorithm for extracting mechanical properties, such as Young's modulus, and mean stress, through the external electrical circuit behavior of the micro test-key. An approximate analytical solution for the pull-in voltage of bridge-type test-key subjected to electrostatic load and initial stress is derived based on Euler's beam model and the minimum energy method. Then one can use the aforesaid closed form solution of the pull-in voltage to extract the Young's modulus and mean stress of the test structures. The test cases include the test-key fabricated by a TSMC 0.18 µm standard CMOS process, and the experimental results refer to Osterberg's work on the pull-in voltage of single crystal silicone microbridges. The extracted material properties calculated by the present algorithm are valid. Besides, this paper also analyzes the robustness of this algorithm regarding the dimension effects of test-keys. This mechanical properties extracting method is expected to be applicable to the wafer-level testing in micro-device manufacture and compatible with the wafer-level testing in IC industry since the test process is non-destructive.


Assuntos
Módulo de Elasticidade , Teste de Materiais , Sistemas Microeletromecânicos , Algoritmos , Humanos , Fenômenos Mecânicos , Estresse Mecânico
5.
Sensors (Basel) ; 10(6): 6149-71, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22219707

RESUMO

Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices.


Assuntos
Desenho de Equipamento , Sistemas Microeletromecânicos/instrumentação , Modelos Teóricos , Eletricidade Estática , Desenho de Equipamento/métodos , Humanos , Sistemas Microeletromecânicos/métodos , Microtecnologia , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA