RESUMO
TiO2 nanotubes (NTs) with amorphous and crystalline structures have attracted interest due to their wide range of applications, particularly black TiO2, which addresses the limitations of conventional TiO2 (a wide band gap of 3.0-3.2 eV). Understanding the amorphous-to-anatase phase transition is crucial for phase control of crystalline TiO2. This study investigates the size-dependent phase transition behavior of TiO2 and black TiO2 NTs using temperature-dependent synchrotron-based X-ray diffraction. Thermal treatments reveal that phase transitions occur in the ranges of 210-240 °C for normal NTs and 270-300 °C for black NTs. The onset temperature and crystallization growth are dependent on size, especially NT length, at least in the system under investigation. We observe anisotropic crystallization in quantum confinement, with the unit cell undergoing compression in the a-axis and expansion in the c-axis during crystallization. The longest black NTs (BV50T4) show a significant difference in the c/a ratio. Defects, such as oxygen vacancies, localize on specific NT planes.
RESUMO
Three supramolecular architectures, [Cu2(dpds)2(C5O5)2(H2O)4]·3H2O (1), [Cu(dpds)(C5O5)]·3H2O (2), and [Cu2(dpds)2(C5O5)2]·9H2O·C2H5OH (3) (dpds = 4,4'-dipyridyldisulfide and C5O5 2- (croconate) = dianion of 4,5-dihydroxycyclopent-4-ene-1,2,3-trione), have been synthesized and structurally characterized. Compound 1 contains two crystallographically independent Cu(II) ions, which are both distorted octahedral geometry with elongation along the croconate- and H2O-bound axial positions and bonded with two N atoms of two dpds, two O atoms of one C5O5 2-, and two H2O molecules. Two crystallographically independent dpds ligands, both adopting the bis-monodentate bridging mode, connect two Cu(II) ions to form a one-dimensional zigzag chain-like coordination polymer. In 2 and 3, there are two and three crystallographically independent Cu(II) ions, respectively, which are all distorted octahedral geometries with elongation along the croconate-bound axial positions six-coordinated and bonded with two N atoms of two dpds ligands in cis- or/and trans-forms and four O atoms of two C5O5 2- ligands. The dpds ligands in 2 and 3 all adopt the bis-monodentate bridging mode, and the C5O5 2- ligands act as bridging ligands with bridging bis-bidentate through three C5O5 2- oxygen atoms in 2 and bridging bis-bidentate through four adjacent C5O5 2- oxygen atoms in 3, respectively, linking the Cu(II) ions to generate a two-dimensional layered and a three-dimensional metal-organic framework, respectively. The structural diversity and dimensionality observed in 1-3 may be attributed to the cis- or/and trans-coordination sphere of Cu(II) centers with two dpds ligands and the coordination modes of croconate ligands. Thermal stability and in situ temperature-dependent structural variations of 1-3 have been verified by thermogravimetric analysis and powder X-ray diffraction measurements. Compounds 1 and 3 both exhibit water vapor capture behaviors with hysteresis isotherms.
RESUMO
STUDY DESIGN: A single-centre, retrospective cohort study. OBJECTIVES: To compare the clinical outcomes between nail-plate constructs and the plate-on-plate technique in the treatment of proximal femoral peri-implant fracture (PFPIF). METHODS: Thirty-seven patients with PFPIF treated at our hospital were included. All patients underwent at least 1-year follow-up. Imaging studies and medical records, including walking ability, complications, and functional outcomes 1 year after surgery, were thoroughly reviewed. RESULTS: Twenty patients were treated with nail-plate constructs. Seventeen patients were treated with the plate-on-plate technique. The average surgical times in the plate-on-plate technique and nail-plate construct groups were 119.4 ± 23.4 min and 246.3 ± 48.0 min, respectively. The average blood losses in the plate-on-plate technique and nail-plate construct groups were 124.7 ± 41.6 mL and 434.3 ± 170.8 mL, respectively. The plate-on-plate technique group had a significantly shorter surgical time and less blood loss than the nail-plate construct group. No statistically significant differences were found in union time, ambulation status, 36-item Short Form Health Survey score, and complication rate between the two groups. CONCLUSION: The plate-on-plate technique can be considered an alternative option to reduce operation time and blood loss in the treatment of PFPIF, especially for older patients and those who are less capable of sustaining long-term operation and anaesthetic exposure.
RESUMO
Forced-flow atomic layer deposition nanolamination is employed to fabricate Pt-Ni nanoparticles on XC-72, with the compositions ranging from Pt94Ni6 to Pt67Ni33. Hydrogen is used as a co-reactant for depositing Pt and Ni. The growth rate of Pt is slower than that using oxygen reactant, and the growth exhibits preferred orientation along the (111) plane. Ni shows much slower growth rate than Pt, and it is only selectively deposited on Pt, not on the substrate. Higher ratios of Ni would hinder subsequent stacking of Pt atoms, resulting in lower overall growth rate and smaller particles (1.3-2.1 nm). Alloying of Pt with Ni causes shifted lattice that leads to larger lattice parameter and d-spacing as Ni fraction increases. From the electronic state analysis, Pt 4f peaks are shifted to lower binding energies with increasing the Ni content, suggesting charge transfer from Ni to Pt. Schematic of the growth behavior is proposed. Most of the alloy nanoparticles exhibit higher electrochemical surface area and oxygen reduction reaction activity than those of commercial Pt. Especially, Pt83Ni17 and Pt87Ni13 show excellent mass activities of 0.76 and 0.59 A mgPt -1, respectively, higher than the DOE target of 2025, 0.44 A mgPt -1.
RESUMO
Understanding the nucleation and growth mechanism of 3d transition bimetallic nanocrystals (NCs) is crucial to developing NCs with tailored nanostructures and properties. However, it remains a significant challenge due to the complexity of 3d bimetallic NCs formation and their sensitivity to oxygen. Here, by combining in situ electron microscopy and synchrotron X-ray techniques, we elucidate the nucleation and growth pathways of Fe-Ni NCs. Interestingly, the formation of Fe-Ni NCs emerges from the assimilation of Fe into Ni clusters together with the reduction of Fe-Ni oxides. Subsequently, these NCs undergo solid-state phase transitions, resulting in two distinct solid solutions, ultimately dominated by γ-Fe3Ni2. Furthermore, we deconvolve the interplays between local coordination and electronic state concerning the growth temperature. We directly visualize the oxidation-state distributions of Fe and Ni at the nanoscale and investigate their changes. This work may reshape and enhance the understanding of nucleation and growth in atomic crystallization.
RESUMO
In the continuous pursuit of an energy-efficient alternative to the energy-intensive mechanochemical process, we developed a coprecipitation strategy for synthesizing halide-based solid-state electrolytes that warrant both structural control and commercial scalability. In this study, we propose a new coprecipitation approach to synthesized Li3InCl6, exhibiting both structural and electrochemical performance stability, with a high ionic conductivity of 1.42 × 10-3 S cm-1, comparable to that of traditionally prepared counterparts. Through the in situ synchrotron X-ray diffraction technique, we unveil the stability mechanisms and rapid chemical reactions of Li3InCl6 under dry Ar, dry O2, and high-humidity atmosphere, which were not previously reported. Furthermore, the fast reversibility capability of moisture-exposed Li3InCl6 was tracked under vacuum, revealing the optimal recovery conditions at low temperatures (150-200 °C). This work addresses the critical challenges in structural engineering and sustainable mass production and provides insights into chemical reactions under real-world conditions.
RESUMO
The different electrolyte conditions, e.g., pH value, for driving efficient HER and OER are one of the major issues hindering the aim for electrocatalytic water splitting in a high efficiency. In this regard, seeking durable and active HER electrocatalysts to align the alkaline conditions of the OER is a promising solution. However, the success in this strategy will depend on a fundamental understanding about the HER mechanism at the atomic scale. In this work, we have provided thorough understanding for the electrochemical HER mechanisms in KOH over Ni- and Co-based hollow pyrite microspheres by in operando X-ray spectroscopies and DFT calculations, including NiS2, CoS2, and Ni0.5Co0.5S2. We discovered that the Ni sites in hollow NiS2 microspheres were very stable and inert, while the Co sites in hollow CoS2 microspheres underwent reduction and generated Co metallic crystal domains under HER. The generation of Co metallic sites would further deactivate H2 evolution due to the large hydrogen desorption free energy (-1.73 eV). In contrast, the neighboring Ni and Co sites in hollow Ni0.5Co0.5S2 microspheres exhibited the electronic interaction to elevate the reactivity of Ni and facilitate the stability of Co without structure or surface degradation. The energy barrier in H2O adsorption/dissociation was only 0.73 eV, followed by 0.06 eV for hydrogen desorption over the Ni0.5Co0.5S2 surface, revealing Ni0.5Co0.5S2 as a HER electrocatalyst with higher durability and activity than NiS2 and CoS2 in the alkaline medium due to the synergy of neighboring Ni and Co sites. We believe that the findings in our work offer a guidance toward future catalyst design.
RESUMO
The recently surged halide-based solid electrolytes (SEs) are great candidates for high-performance all-solid-state batteries (ASSBs), due to their decent ionic conductivity, wide electrochemical stability window, and good compatibility with high-voltage oxide cathodes. In contrast to the crystalline phases in halide SEs, amorphous components are rarely understood but play an important role in Li-ion conduction. Here, we reveal that the presence of amorphous component is common in halide-based SEs that are prepared via mechanochemical method. The fast Li-ion migration is found to be associated with the local chemistry of the amorphous proportion. Taking Zr-based halide SEs as an example, the amorphization process can be regulated by incorporating O, resulting in the formation of corner-sharing Zr-O/Cl polyhedrons. This structural configuration has been confirmed through X-ray absorption spectroscopy, pair distribution function analyses, and Reverse Monte Carlo modeling. The unique structure significantly reduces the energy barriers for Li-ion transport. As a result, an enhanced ionic conductivity of (1.35 ± 0.07) × 10-3 S cm-1 at 25 °C can be achieved for amorphous Li3ZrCl4O1.5. In addition to the improved ionic conductivity, amorphization of Zr-based halide SEs via incorporation of O leads to good mechanical deformability and promising electrochemical performance. These findings provide deep insights into the rational design of desirable halide SEs for high-performance ASSBs.
RESUMO
Nanosized zerovalent iron (NZVI) Fe@Fe3O4 with a core-shell structure derived from photocatalytic MeOH aqueous solution of dinitrosyl iron complex (DNIC) [(N3MDA)Fe(NO)2] (N3MDA = N,N-dimethyl-2-(((1-methyl-1H-imidazole-2-yl)methylene)amino)ethane-1-amine) (1-N3MDA), eosin Y, and triethylamine (TEA) is demonstrated. The NZVI Fe@Fe3O4 core shows a high percentage of zerovalent iron (Fe0 %) and is stabilized by a hydrophobic organic support formed through the photodegradation of eosin Y hybridized with the N3MDA ligand. In addition to its well-known reductive properties in wastewater treatment and groundwater remediation, NZVI demonstrates the ability to form heterostructures when it interacts with metal ions. In this research, Co2+ is employed as a model contaminant and reacted with NZVI Fe@Fe3O4 to result in the formation of a distinct Fe-Co heterostructure, cracked NZVI (CNZVI). The slight difference in the standard redox potentials between Fe2+ and Co2+, the magnetic properties of Co2+, and the absence of surface hydroxides of Fe@Fe3O4 enable NZVI to mildly reduce Co2+ and facilitate Co2+ penetration into the iron core. Taking advantage of the well-dispersed nature of CNZVI on an organic support, the reduction in particle size due to Co2+ penetration, and Fe-Co synergism, CNZVI is employed as a catalyst in the alkaline oxygen evolution reaction (OER). Remarkably, CNZVI exhibits a highly efficient OER performance, surpassing the benchmark IrO2 catalyst. These findings show the potential of using NZVI as a template for synthesizing highly efficient OER catalysts. Moreover, the study demonstrates the possibility of repurposing waste materials from water treatment as valuable resources for catalytic energy conversion, particularly in water oxidation processes.
RESUMO
To investigate synergistic effect between geometric and electronic structures on directing CO2 RR selectivity, water phase synthetic protocol and surface architecture engineering strategy are developed to construct monodispersed Bi-doped Cu-based nanocatalysts. The strongly correlated catalytic directionality and Bi3+ dopant can be rationalized by the regulation of [*COOH]/[*CO] adsorption capacities through the appropriate doping of Bi3+ electronic modulator, resulting in volcano relationship between FECO /TOFCO and surface EVBM values. Spectroscopic study reveals that the dual-site binding mode ([CuâµâC(âO)OâBi3+ ]) enabled by Cu1 Bi3+ 2 motif in single-phase Cu150 Bi1 nanocatalyst drives CO2-to-CO conversion. In contrast, the study of dynamic Bi speciation and phase transformation in dual-phase Cu50 Bi1 nanocatalyst unveils that the Bi0 -Bi0 contribution emerges at the expense of BOC phase, suggesting metallic Bi0 phase acting as [H]Ë formation center switches CO2 RR selectivity toward CO2-to-HCOO- conversion via [*OCHO] and [*OCHOK] intermediates. This work provides significant insight into how geometric architecture cooperates with electronic effect and catalytic motif/phase to guide the selectivity of electrocatalytic CO2 reduction through the distinct surface-bound intermediates and presents molecular-level understanding of catalytic mechanism for CO/HCOO- formation.
RESUMO
Single-atom catalysts (SACs) have the unique coordination environment and electronic structure due to the quantum size effect, which plays an essential role in facilitating catalytic reactions. However, due to the limited understanding of the formation mechanism of single atoms, achieving the modulation of the local atomic structure of SACs is still difficult and challenging. Herein, we have prepared a series of Ni SACs loaded on nitrogen-doped carbon substrates with different parameters using a dissolution-and-carbonization method to systematically investigate the effect of temperature on the structure of the SACs. The results of characterization and electrochemical measurements are analyzed to reveal the uniform law between temperature and the metal loading, bond length, coordination number, valence state and CO2 reduction performance, showing the feasibility of controlling the structure of SACs through temperature to regulate the catalytic performance. This is important for the understanding of catalytic reaction mechanisms and the design of efficient catalysts.
RESUMO
Methane pyrolysis (MP) is a potential technology for CO2-free hydrogen production that generates only solid carbon by-products. However, developing a highly efficient catalyst for stable methane pyrolysis at a moderate temperature has been challenging. We present a new and highly efficient catalyst created by modifying a Ni-Bi liquid alloy with the addition of Mo to produce a ternary NiMo-Bi liquid alloy catalyst (LAC). This catalyst exhibited a considerably low activation energy of 81.2 kilojoules per mole, which enabled MP at temperatures between 450 and 800 Celsius and a hydrogen generation efficiency of 4.05 ml per gram of nickel per minute. At 800 Celsius, the catalyst exhibited 100% H2 selectivity and 120 hours of stability.
RESUMO
The 3-D matrix scale ion-exchange mechanism was explored for high-capacity cadmium (Cd) removal using bone chars (BC) chunks (1-2 mm) made at 500 °C (500BC) and 700 °C (700BC) in aqueous solutions. The Cd incorporation into the carbonated hydroxyapatite (CHAp) mineral of BC was examined using a set of synchrotron-based techniques. The Cd removal from solution and incorporation into mineral lattice were higher in 500BC than 700BC, and the diffusion depth was modulated by the initial Cd concentration and charring temperature. A higher carbonate level of BC, more pre-leached Ca sites, and external phosphorus input enhanced Cd removal. The 500BC showed a higher CO32-/PO43- ratio and specific surface area (SSA) than the 700BC, providing more vacant sites by dissolution of Ca2+. In situ observations revealed the refilling of sub-micron pore space in the mineral matrix because of Cd incorporation.The X-ray nanodiffraction (XND) analyses revealed that Cd was mainly removed from water by incorporation into the mineral lattice of 500BC via ion exchange, rather than surface sorption and precipitation, and the mineral phase was transformed from hydroxyapatite (HAp) to cadmium hydroxyapatite (Cd-HAp). The Rietveld's refinement of X-ray diffraction (XRD) data resolved up to 91% of the crystal displacement of Ca2+ by Cd2+. The specific phase and stoichiometry of the new Cd-HAp mineral was dependent on the level of ion exchange. This mechanistic study confirmed that 3-D ion exchange was the most important path for heavy metal removal from aqueous solution and immobilization in BC mineral matrix, and put forward a novel and sustainable remediation strategy for Cd removal in wastewater and soil clean-up.
Assuntos
Cádmio , Durapatita , Durapatita/química , Cádmio/química , Fósforo , AdsorçãoRESUMO
Semiconductor crystals have generally shown facet-dependent electrical, photocatalytic, and optical properties. These phenomena have been proposed to result from the presence of a surface layer with bond-level deviations. To provide experimental evidence of this structural feature, synchrotron X-ray sources are used to obtain X-ray diffraction (XRD) patterns of polyhedral cuprous oxide crystals. Cu2 O rhombic dodecahedra display two distinct cell constants from peak splitting. Peak disappearance during slow Cu2 O reduction to Cu with ammonia borane differentiates bulk and surface layer lattices. Cubes and octahedra also show two peak components, while diffraction peaks of cuboctahedra are comprised of three components. Temperature-varying lattice changes in the bulk and surface regions also show shape dependence. From transmission electron microscopy (TEM) images, slight plane spacing deviations in surface and inner crystal regions are measured. Image processing provides visualization of the surface layer with depths of about 1.5-4 nm giving dashed lattice points instead of dots from atomic position deviations. Close TEM examination reveals considerable variation in lattice spot size and shape for different particle morphologies, explaining why facet-dependent properties are emerged. Raman spectrum reflects the large bulk and surface lattice difference in rhombic dodecahedra. Surface lattice difference can change the particle bandgap.
RESUMO
Two-dimensional metal-organic framework (MOF) composites were produced by incorporating Fe-MOFs into reduced graphene oxide (rGO) nanosheets to form Fe-MOF/rGO composites by hydrothermal synthesis. SEM, TEM, XRD, XPS, and measurements of contact angles were used to characterize the composites. TEM studies revealed that the rod-like-shaped Fe-MOFs were extensively dispersed on the rGO sheets. Incorporating Fe-MOF into rGO significantly improves performance due to the large surface area, chemical stability, and high electrical conductivity. The response signals for the electrochemical sensing performance of Fe-MOF/rGO-modified electrodes to nitrofurazone (NFZ) were significantly enhanced. Differential pulse voltammetry was used to detect the NFZ, and the MOF/rGO sensor possesses a lower detection limit (0.77µM) with two dynamic ranges from 0.6-60 to 128-499.3 µM and high sensitivity (1.909 µA·mM-1·cm-2). Moreover, the anti-interference properties of the sensor were quite reproducible and stable. To understand the mechanism responsible for the enhanced sensing performance of the composite, grand canonical Monte Carlo calculations were performed for Fe-MOF/rGO composites with five unit cells of Fe-MOF and four layers of rGO. We attributed the improvement to the fact that the interface between the Fe-MOF and rGO absorbed increased NFZ molecules. The findings reported herein confirm that such Fe-MOF/rGO composites have significantly improved electrochemical performance and practical applicability of sensing nitrofurazone.
RESUMO
The lithiation/delithiation properties of α-Si3 N4 and ß-Si3 N4 are compared and the carbon coating effects are examined. Then, ß-Si3 N4 at various fractions is used as the secondary phase in a Si anode to modify the electrode properties. The incorporated ß-Si3 N4 decreases the crystal size of Si and introduces a new NSiO species at the ß-Si3 N4 /Si interface. The nitrogen from the milled ß-Si3 N4 diffuses into the surface carbon coating during the carbonization heat treatment, forming pyrrolic nitrogen and CNO species. The synergistic effects of combining ß-Si3 N4 and Si phases on the specific capacity are confirmed. The operando X-ray diffraction and X-ray photoelectron spectroscopy data indicate that ß-Si3 N4 is partially consumed during lithiation to form a favorable Li3 N species at the electrode. However, the crystalline structure of the hexagonal ß-Si3 N4 is preserved after prolonged cycling, which prevents electrode agglomeration and performance deterioration. The carbon-coated ß-Si3 N4 /Si composite anode shows specific capacities of 1068 and 480 mAh g-1 at 0.2 and 5 A g-1 , respectively. A full cell consisting of the carbon-coated ß-Si3 N4 /Si anode and a LiNi0.8 Co0.1 Mn0.1 O2 cathode is constructed and its properties are evaluated. The potential of the proposed composite anodes for Li-ion battery applications is demonstrated.
RESUMO
CdMnO3 had not been previously reported and was a missing piece in the A2+Mn4+O3 series. We succeeded in synthesizing this compound by a high-pressure method and confirmed that it is crystallized in a distorted perovskite structure with a Cd2+Mn4+O3 charge configuration. The obtained insulating CdMnO3 exhibits an antiferromagnetic transition at about 86 K. First-principles calculations revealed that the Mn4+ (t2g3) spins form a C-type antiferromagnetic structure, which is in sharp contrast to the G-type antiferromagnetism in the isostructural and isoelectronic CaMnO3. Significant overlap of the Mn-3d and O(2)-2p orbitals produces distorted octahedra with a large Mn-O(1)-Mn tilt and induces antiferromagnetic couplings in the ac plane and the ferromagnetic couplings along the b axis.
RESUMO
Definitive understanding of superconductivity and its interplay with structural symmetry in the hole-doped lanthanum cuprates remains elusive. The suppression of superconductivity around 1/8th doping maintains particular focus, often attributed to charge-density waves (CDWs) ordering in the low-temperature tetragonal (LTT) phase. Central to many investigations into this interplay is the thesis that La1.875Ba0.125CuO4 and particularly La1.675Eu0.2Sr0.125CuO4 present model systems of purely LTT structure at low temperature. However, combining single-crystal and high-resolution powder X-ray diffraction, we find these to exhibit significant, intrinsic coexistence of LTT and low-temperature orthorhombic domains, typically associated with superconductivity, even at 10 K. Our two-phase models reveal substantially greater tilting of CuO6 octahedra in the LTT phase, markedly buckling the CuO2 planes. This would couple significantly to band narrowing, potentially indicating a picture of electronically driven phase segregation, reminiscent of optimally doped manganites. These results call for reassessment of many experiments seeking to elucidate structural and electronic interplay at 1/8 doping.
RESUMO
Two ligand ratio-dependent supramolecular networks, [Cd(2,2'-bpym)1.5(BDC)]·0.5(2,2'-bpym)·5H2O (1) and [Cd(2,2'-bpym)0.5(BDC)(H2O)3] (2), (BDC2- = dianion of terephthalic acid and 2,2'-bpym = 2,2'-bipyrimidine) have been synthesized and structurally characterized by the single-crystal X-ray diffraction method. Structural determination reveals that compound 1 is a two-dimensional (2D) layered metal-organic framework (MOF) constructed via the bridges of Cd(II) ions with 2,2'-bpym and BDC2- ligands, and compound 2 is a zero-dimensional (0D) 2,2'-bpym-bridged di-Cd(II) monomeric complex. When the thermally dehydrated powders of 1 (at 100 °C) were immersed into water solution, most of the dehydrated powders of 1 underwent structural transformation back to rehydrated 1, but very little amounts of the dehydrated powders of 1 were decomposed to light-brown crystals of 2 or colorless crystals of a new coordination polymer (CP), [Cd(2,2'-bpym)(BDC)(H2O)]·3H2O (3), with its one-dimensional (1D) zigzag chain-like framework being constructed via the bridges of Cd(II) ions with the BDC2- ligand. Structural analysis reveals that all 3D supramolecular networks of 1-3 are further constructed via strong intermolecular interactions, including hydrogen bonds and π-π stacking interactions. Compounds 1 and 2 both exhibit significant water vapor hysteresis isotherms, and their cyclic water de-/adsorption behavior accompanied with solid-state structural transformation has been verified by de-/rehydration TG analyses and powder X-ray diffraction (PXRD) measurements.