Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Fluids Barriers CNS ; 21(1): 29, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532486

RESUMO

BACKGROUND: Patients with Alzheimer's disease (AD) develop blood-brain barrier dysfunction to varying degrees. How aging impacts Aß pathology, blood-brain barrier function, and cognitive decline in AD remains largely unknown. In this study, we used 5xFAD mice to investigate changes in Aß levels, barrier function, and cognitive decline over time. METHODS: 5xFAD and wild-type (WT) mice were aged between 9.5 and 15.5 months and tested for spatial learning and reference memory with the Morris Water Maze (MWM). After behavior testing, mice were implanted with acute cranial windows and intravenously injected with fluorescent-labeled dextrans to assess their in vivo distribution in the brain by two-photon microscopy. Images were processed and segmented to obtain intravascular intensity, extravascular intensity, and vessel diameters as a measure of barrier integrity. Mice were sacrificed after in vivo imaging to isolate brain and plasma for measuring Aß levels. The effect of age and genotype were evaluated for each assay using generalized or cumulative-linked logistic mixed-level modeling and model selection by Akaike Information Criterion (AICc). Pairwise comparisons were used to identify outcome differences between the two groups. RESULTS: 5xFAD mice displayed spatial memory deficits compared to age-matched WT mice in the MWM assay, which worsened with age. Memory impairment was evident in 5xFAD mice by 2-threefold higher escape latencies, twofold greater cumulative distances until they reach the platform, and twice as frequent use of repetitive search strategies in the pool when compared with age-matched WT mice. Presence of the rd1 allele worsened MWM performance in 5xFAD mice at all ages but did not alter the rate of learning or probe trial outcomes. 9.5-month-old 15.5-month-old 5xFAD mice had twofold higher brain Aß40 and Aß42 levels (p < 0.001) and 2.5-fold higher (p = 0.007) plasma Aß40 levels compared to 9.5-month-old 5xFAD mice. Image analysis showed that vessel diameters and intra- and extravascular dextran intensities were not significantly different in 9.5- and 15.5-month-old 5xFAD mice compared to age-matched WT mice. CONCLUSION: 5xFAD mice continue to develop spatial memory deficits and increased Aß brain levels while aging. Given in vivo MP imaging limitations, further investigation with smaller molecular weight markers combined with advanced imaging techniques would be needed to reliably assess subtle differences in barrier integrity in aged mice.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Humanos , Animais , Lactente , Barreira Hematoencefálica/metabolismo , Camundongos Transgênicos , Doença de Alzheimer/genética , Transtornos da Memória , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
2.
J Physiol Biochem ; 78(4): 833-844, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35749032

RESUMO

Obesity is categorized as a common comorbidity found in people who experience an ischemic stroke. However, the mechanisms to explain this correlation have still not been elucidated fully. Pyroptosis and necroptosis are novel forms of programmed cell death that occur upon intracellular danger signals. The major feature of pyroptosis and necroptosis is damage to the lipid membrane, which consequently results in lytic cell death and allows the release of high mobility group box protein 1 (HMGB1) into the extracellular space. We aimed to investigate the influences of high-fat diet (HFD) consumption on cerebral ischemia and reperfusion (I/R) injury and hypothesized that HFD consumption exacerbated the activation of pyroptosis, necroptosis, and HMGB1 signaling pathways. All rats received normal diet (ND) or HFD for 16 weeks. Subsequently, both groups were divided into either a sham- or an I/R-operated group. Twenty-four hours after the surgery, all rats were evaluated for neurological deficits and then sacrificed. After I/R injury, there were more severe functional deficits and larger brain infarcts in the HFD compared with the ND group. The histological observation revealed an increase in tissue abnormalities in the HFD group, consistent with the massive reduction of intact neurons along the peri-infarct region. Furthermore, cerebral I/R injury dramatically activated the pyroptotic, necroptotic, and HMGB1 signaling pathways in HFD-fed rats compared with ND-fed rats. These findings suggest that chronic HFD consumption worsens ischemic brain pathology and leads to poor post-stroke outcomes by exacerbating pyroptotic and necroptotic cell death.


Assuntos
Isquemia Encefálica , Proteína HMGB1 , Traumatismo por Reperfusão , Animais , Ratos , Dieta Hiperlipídica/efeitos adversos , Proteína HMGB1/metabolismo , Piroptose , Necroptose , Traumatismo por Reperfusão/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/patologia
3.
Neurotox Res ; 40(1): 14-25, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34997920

RESUMO

Cerebral damage following cerebral ischemia/reperfusion injury affects the neurological deficits and motor impairment of stroke patients in the long-term period. Angiogenesis, the essential process for restoration of cerebral blood flow (CBF) in the ischemic brain, promotes the recovery of neurological function following ischemia. The aim of this study was to investigate the long-term effects of morin on angiogenesis and functional outcomes in a middle cerebral artery occlusion (MCAO) and reperfusion model. Male Wistar rats were subjected to MCAO, and they were administered 30 mg/kg of morin at reperfusion via i.p. injection daily for 14 days. Fourteen days after I/R injury, the rats were evaluated for the brain damage, and angiogenic factors involved in Ang1/Tie-2 and Wnt/ß-catenin signaling. In addition, at 1, 7, and 14 days after reperfusion, rotarod and pole tests were performed to investigate the functional recovery. We found morin significantly reduced the infarct size, blood-brain barrier (BBB) leakage, and apoptotic cells at 14 days after I/R injury. It also promoted angiogenesis via boosting the expression of angiogenic proteins, such as angiopoietin 1 (Ang1), Tie-2, Wnt3α, ß-catenin, and cyclin D1. Morin-mediated angiogenesis was confirmed by a significant increase in microvessel's density in the penumbra area and an increase in von Willebrand factor (vWF) protein expression of the morin-treated rats. Moreover, the rotarod and pole tests also demonstrated morin increased functional recovery in the morin-treated rats compared to the vehicle rats. Therefore, our data exposed that morin promotes angiogenesis and improves functional outcomes in MCAO and reperfusion rats.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Angiopoietina-1 , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Flavonoides , Humanos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Masculino , Ratos , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , beta Catenina/metabolismo
4.
Neurotox Res ; 40(1): 259-266, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34843079

RESUMO

Cerebral ischemic stroke is one of the main causes of death and long-term disability worldwide. However, the mechanism is unclear, and treatments are limited. In this study, we aimed to investigate the anti-inflammatory effect of agomelatine in a permanent middle cerebral artery occlusion (pMCAO) model. Forty-eight male Wistar rats were randomly divided into four groups: sham, pMCAO + vehicle, pMCAO + agomelatine (40 mg/kg, i.p.), and pMCAO + melatonin (10 mg/kg, i.p.) groups. On day 1 after permanent cerebral ischemia, the animals were sacrificed, and brain tissues were collected for western blot analysis, and immunohistochemistry. Agomelatine treatment ameliorated inflammatory responses by decreasing the protein levels of trigger Toll-like receptor (TLR4)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway components together with nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome components. In addition, agomelatine suppressed microglial activation and pyroptotic cell death after cerebral ischemic injury. These results suggest that agomelatine exerts an anti-inflammatory effect and attenuates brain damage by inhibiting microglial activation through the TLR4/NLRP3 signaling pathway.


Assuntos
Isquemia Encefálica , Proteína 3 que Contém Domínio de Pirina da Família NLR , Acetamidas , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Masculino , Microglia/metabolismo , NF-kappa B/metabolismo , Naftalenos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptor 4 Toll-Like/metabolismo
5.
Sci Rep ; 10(1): 13379, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770144

RESUMO

This study aimed to investigate the effects of morin on cerebral damage and blood-brain barrier (BBB) integrity in a middle cerebral artery occlusion (MCAO) and reperfusion model. Wistar rats were exposed to MCAO for 2 h, followed by reperfusion. Thirty mg/kg of morin was administered via intraperitoneal injection at the different time points: before ischemia, during ischemia, and at reperfusion. The rats were divided into five groups, including sham, vehicle, and three groups of morin. Twenty-four hours after reperfusion, the rats were tested for neurological deficits, and the brains were harvested to assess brain damage. In addition, brains were harvested 72 h to determine BBB disruption. We found that morin significantly reduced reactive oxygen species production and lipid peroxidation. It also decreased inflammation via reducing the expression of Toll-like receptor 4, nuclear factor kappa-beta. Morin ameliorated cerebral damage and reduced apoptosis through decreasing the cerebral infarct size, including apoptotic cell death. Moreover, morin decreased the BBB damage via reducing Evans blue extravasation, neutrophil infiltration, and increasing tight junction protein expression. Therefore, morin protected against cerebral and BBB damage by attenuating oxidative stress, inflammation, and apoptosis in MCAO and reperfusion models.


Assuntos
Anti-Inflamatórios , Barreira Hematoencefálica/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Flavonoides/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Flavonoides/administração & dosagem , Flavonoides/uso terapêutico , Inflamação , Injeções Intraperitoneais , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , NF-kappa B/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo
6.
Eur J Pharmacol ; 874: 173028, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32084418

RESUMO

Stroke is a major cause of death and permanent disability worldwide. It has been reported that 85% of stroke patients undergo an ischaemic stroke. The standard treatment is currently recanalization. However, only 5% of patients have access to this treatment. Therefore, new strategies for permanent ischaemic stroke treatment need to be investigated. Agomelatine is a melatonergic agonist that acts on MT1/2 receptors and is an antagonist of 5-HT2c receptors, and melatonergic has pleiotropic effects, such as antioxidation or anti-inflammation effects. In this study, we focused on the effect of agomelatine on permanent cerebral ischaemia in a rat model. Male Wistar rats were randomly divided into the following four groups (n = 6/group): sham operating group, permanent ischaemic model group, permanent ischaemic model plus agomelatine (40 mg/kg, i.p) group and permanent ischaemic model plus melatonin (10 mg/kg, i.p) group. Twenty-four h after ischaemic onset, we investigated the neurological deficits and infarct volume using neurological deficit scores, 2,3,5-triphenyltetrazolium chloride (TTC) and transmission electron microscopy (Kochanski et al.). Moreover, we analysed Nrf2-HO-1 protein expression by Western blot. The results showed that agomelatine and melatonin decreased neuronal injury and promoted the Nrf2-HO-1 signalling pathway. These findings suggest that agomelatine and melatonin exert beneficial effects on permanent cerebral ischaemia.


Assuntos
Acetamidas/uso terapêutico , Heme Oxigenase (Desciclizante)/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Acetamidas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Melatonina/farmacologia , Melatonina/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
7.
Neurochem Int ; 102: 114-122, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28012846

RESUMO

Agomelatine is an agonist of the melatonergic MT1/MT2 receptors and an antagonist of the serotonergic 5-HT receptors. Its actions mimic melatonin in antioxidative and anti-inflammation. However, the protective mechanism of agomelatine in ischemic/reperfusion (I/R) injury has not been investigated. In this study, cerebral I/R injury rats were induced by middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion. The rats were randomly divided into 6 groups (12 rats per group): sham-operated; vehicle-treated I/R; 20 mg/kg, 40 mg/kg, and 80 mg/kg agomelatine-treated I/R; and 10 mg/kg melatonin-treated I/R. Agomelatine and melatonin were intraperitoneally administrated to the rats 1 h before MCAO induction. After reperfusion for 24 h, the brain samples were harvested for evaluating the infarct volume, histological changes, terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining as well as cleaved caspase-3, Bax, Bcl-XL, nuclear factor erythroid-2-related factor (Nrf2), and heme oxygenase (HO-1) levels. Agomelatine treatment significantly decreased apoptosis, with decreases in Bax and cleaved caspase-3, and increased Bcl-XL, along with a decrease in apoptotic neuronal cells. Moreover, agomelatine was also found to markedly increase the expression of HO-1, the antioxidative enzymes, and the activity of superoxide dismutase (SOD) mediated by Nrf2 pathway. Agomelatine treatment protects the brain from cerebral I/R injury by suppressing apoptosis and agomelatine has antioxidant properties. Hence, there exists the possibility of developing agomelatine as a potential candidate for treating ischemic stroke.


Assuntos
Acetamidas/farmacologia , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Encéfalo/metabolismo , Camundongos , Neuroproteção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA