Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2313590121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683978

RESUMO

Myokines and exosomes, originating from skeletal muscle, are shown to play a significant role in maintaining brain homeostasis. While exercise has been reported to promote muscle secretion, little is known about the effects of neuronal innervation and activity on the yield and molecular composition of biologically active molecules from muscle. As neuromuscular diseases and disabilities associated with denervation impact muscle metabolism, we hypothesize that neuronal innervation and firing may play a pivotal role in regulating secretion activities of skeletal muscles. We examined this hypothesis using an engineered neuromuscular tissue model consisting of skeletal muscles innervated by motor neurons. The innervated muscles displayed elevated expression of mRNAs encoding neurotrophic myokines, such as interleukin-6, brain-derived neurotrophic factor, and FDNC5, as well as the mRNA of peroxisome-proliferator-activated receptor γ coactivator 1α, a key regulator of muscle metabolism. Upon glutamate stimulation, the innervated muscles secreted higher levels of irisin and exosomes containing more diverse neurotrophic microRNAs than neuron-free muscles. Consequently, biological factors secreted by innervated muscles enhanced branching, axonal transport, and, ultimately, spontaneous network activities of primary hippocampal neurons in vitro. Overall, these results reveal the importance of neuronal innervation in modulating muscle-derived factors that promote neuronal function and suggest that the engineered neuromuscular tissue model holds significant promise as a platform for producing neurotrophic molecules.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Exossomos , Músculo Esquelético , Exossomos/metabolismo , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/inervação , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos , Fibronectinas/metabolismo , Neurônios Motores/metabolismo , Interleucina-6/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Neurônios/metabolismo , Fatores de Crescimento Neural/metabolismo , Miocinas
2.
Adv Sci (Weinh) ; 11(11): e2306826, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38161217

RESUMO

Motivated by the unexplored potential of in vitro neural systems for computing and by the corresponding need of versatile, scalable interfaces for multimodal interaction, an accurate, modular, fully customizable, and portable recording/stimulation solution that can be easily fabricated, robustly operated, and broadly disseminated is presented. This approach entails a reconfigurable platform that works across multiple industry standards and that enables a complete signal chain, from neural substrates sampled through micro-electrode arrays (MEAs) to data acquisition, downstream analysis, and cloud storage. Built-in modularity supports the seamless integration of electrical/optical stimulation and fluidic interfaces. Custom MEA fabrication leverages maskless photolithography, favoring the rapid prototyping of a variety of configurations, spatial topologies, and constitutive materials. Through a dedicated analysis and management software suite, the utility and robustness of this system are demonstrated across neural cultures and applications, including embryonic stem cell-derived and primary neurons, organotypic brain slices, 3D engineered tissue mimics, concurrent calcium imaging, and long-term recording. Overall, this technology, termed "mind in vitro" to underscore the computing inspiration, provides an end-to-end solution that can be widely deployed due to its affordable (>10× cost reduction) and open-source nature, catering to the expanding needs of both conventional and unconventional electrophysiology.


Assuntos
Encéfalo , Neurônios , Eletrodos , Encéfalo/fisiologia , Neurônios/fisiologia , Estimulação Elétrica , Fenômenos Eletrofisiológicos/fisiologia
3.
Nano Lett ; 23(23): 10971-10982, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37991895

RESUMO

Nanoparticles have emerged as potential transporters of drugs targeting Alzheimer's disease (AD), but their design should consider the blood-brain barrier (BBB) integrity and neuroinflammation of the AD brain. This study presents that aging is a significant factor for the brain localization and retention of nanoparticles, which we engineered to bind with reactive astrocytes and activated microglia. We assembled 200 nm-diameter particles using a block copolymer of poly(lactic-co-glycolic acid) (PLGA) and CD44-binding hyaluronic acid (HA). The resulting PLGA-b-HA nanoparticles displayed increased binding to CD44-expressing reactive astrocytes and activated microglia. Upon intravascular injection, nanoparticles were localized to the hippocampi of both APP/PS1 AD model mice and their control littermates at 13-16 months of age due to enhanced transvascular transport through the leaky BBB. No particles were found in the hippocampi of young adult mice. These findings demonstrate the brain localization of nanoparticles due to aging-induced BBB breakdown regardless of AD pathology.


Assuntos
Doença de Alzheimer , Nanopartículas , Camundongos , Animais , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo
4.
Nat Photonics ; 17(3): 250-258, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37143962

RESUMO

Widefield microscopy of optically thick specimens typically features reduced contrast due to "spatial crosstalk", in which the signal at each point in the field of view is the result of a superposition from neighbouring points that are simultaneously illuminated. In 1955, Marvin Minsky proposed confocal microscopy as a solution to this problem. Today, laser scanning confocal fluorescence microscopy is broadly used due to its high depth resolution and sensitivity, but comes at the price of photobleaching, chemical, and photo-toxicity. Here, we present artificial confocal microscopy (ACM) to achieve confocal-level depth sectioning, sensitivity, and chemical specificity, on unlabeled specimens, nondestructively. We equipped a commercial laser scanning confocal instrument with a quantitative phase imaging module, which provides optical path-length maps of the specimen in the same field of view as the fluorescence channel. Using pairs of phase and fluorescence images, we trained a convolution neural network to translate the former into the latter. The training to infer a new tag is very practical as the input and ground truth data are intrinsically registered, and the data acquisition is automated. The ACM images present significantly stronger depth sectioning than the input (phase) images, enabling us to recover confocal-like tomographic volumes of microspheres, hippocampal neurons in culture, and 3D liver cancer spheroids. By training on nucleus-specific tags, ACM allows for segmenting individual nuclei within dense spheroids for both cell counting and volume measurements. In summary, ACM can provide quantitative, dynamic data, nondestructively from thick samples, while chemical specificity is recovered computationally.

5.
Cell Rep Methods ; 3(2): 100408, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36936077

RESUMO

DNA-point accumulation for imaging at nanoscale topography (DNA-PAINT) can image fixed biological specimens with nanometer resolution and absolute stoichiometry. In living systems, however, the usage of DNA-PAINT has been limited due to high salt concentration in the buffer required for specific binding of the imager to the docker attached to the target. Here, we used multiple binding motifs of the docker, from 2 to 16, to accelerate the binding speed of the imager under physiological buffer conditions without compromising spatial resolution and maintaining the basal level homeostasis during the measurement. We imaged endogenous α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in cultured neurons-critical proteins involved in nerve communication-by DNA-PAINT in 3-dimensions using a monovalent single-chain variable fragment (scFv) to the GluA1 subunit of AMPAR. We found a heterogeneous distribution of synaptic AMPARs: ≈60% are immobile, primarily in nanodomains, defined as AMPARs that are within 0.3 µm of the Homer1 protein in the postsynaptic density; the other ∼40% of AMPARs have restricted mobility and trajectory.


Assuntos
Neurônios , Receptores de AMPA , Receptores de AMPA/genética , Neurônios/metabolismo , Proteínas de Transporte/metabolismo
6.
Front Cell Neurosci ; 16: 838419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966206

RESUMO

Homeostatic plasticity encompasses the mechanisms by which neurons stabilize their synaptic strength and excitability in response to prolonged and destabilizing changes in their network activity. Prolonged activity blockade leads to homeostatic scaling of action potential (AP) firing rate in hippocampal neurons in part by decreased activity of N-Methyl-D-Aspartate receptors and subsequent transcriptional down-regulation of potassium channel genes including KCNQ3 which encodes Kv7.3. Neuronal Kv7 channels are mostly heterotetramers of Kv7.2 and Kv7.3 subunits and are highly enriched at the axon initial segment (AIS) where their current potently inhibits repetitive and burst firing of APs. However, whether a decrease in Kv7.3 expression occurs at the AIS during homeostatic scaling of intrinsic excitability and what signaling pathway reduces KCNQ3 transcript upon prolonged activity blockade remain unknown. Here, we report that prolonged activity blockade in cultured hippocampal neurons reduces the activity of extracellular signal-regulated kinase 1/2 (ERK1/2) followed by a decrease in the activation of brain-derived neurotrophic factor (BDNF) receptor, Tropomyosin receptor kinase B (TrkB). Furthermore, both prolonged activity blockade and prolonged pharmacological inhibition of ERK1/2 decrease KCNQ3 and BDNF transcripts as well as the density of Kv7.3 and ankyrin-G at the AIS. Collectively, our findings suggest that a reduction in the ERK1/2 activity and subsequent transcriptional down-regulation may serve as a potential signaling pathway that links prolonged activity blockade to homeostatic control of BDNF-TrkB signaling and Kv7.3 density at the AIS during homeostatic scaling of AP firing rate.

7.
Front Behav Neurosci ; 16: 930216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928789

RESUMO

Neuronal Kv7/Potassium Voltage-Gated Channel Subfamily Q (KCNQ) potassium channels underlie M-current that potently suppresses repetitive and burst firing of action potentials (APs). They are mostly heterotetramers of Kv7.2 and Kv7.3 subunits in the hippocampus and cortex, the brain regions important for cognition and behavior. Underscoring their critical roles in inhibiting neuronal excitability, autosomal dominantly inherited mutations in Potassium Voltage-Gated Channel Subfamily Q Member 2 (KCNQ2) and Potassium Voltage-Gated Channel Subfamily Q Member 3 (KCNQ3) genes are associated with benign familial neonatal epilepsy (BFNE) in which most seizures spontaneously remit within months without cognitive deficits. De novo mutations in KCNQ2 also cause epileptic encephalopathy (EE), which is characterized by persistent seizures that are often drug refractory, neurodevelopmental delay, and intellectual disability. Heterozygous expression of EE variants of KCNQ2 is recently shown to induce spontaneous seizures and cognitive deficit in mice, although it is unclear whether this cognitive deficit is caused directly by Kv7 disruption or by persistent seizures in the developing brain as a consequence of Kv7 disruption. In this study, we examined the role of Kv7 channels in learning and memory by behavioral phenotyping of the KCNQ2+/- mice, which lack a single copy of KCNQ2 but dos not display spontaneous seizures. We found that both KCNQ2+/- and wild-type (WT) mice showed comparable nociception in the tail-flick assay and fear-induced learning and memory during a passive inhibitory avoidance (IA) test and contextual fear conditioning (CFC). Both genotypes displayed similar object location and recognition memory. These findings together provide evidence that heterozygous loss of KCNQ2 has minimal effects on learning or memory in mice in the absence of spontaneous seizures.

8.
Epilepsia ; 63(5): 1211-1224, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35188269

RESUMO

OBJECTIVE: STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific tyrosine phosphatase. Membrane-bound STEP61 is the only isoform expressed in hippocampus and cortex. Genetic deletion of STEP enhances excitatory synaptic currents and long-term potentiation in the hippocampus. However, whether STEP61 affects seizure susceptibility is unclear. Here we investigated the effects of STEP inhibitor TC-2153 on seizure propensity in a murine model displaying kainic acid (KA)-induced status epilepticus and its effect on hippocampal excitability. METHODS: Adult male and female C57BL/6J mice received intraperitoneal injection of either vehicle (2.8% dimethylsulfoxide [DMSO] in saline) or TC-2153 (10 mg/kg) and then either saline or KA (30 mg/kg) 3 h later before being monitored for behavioral seizures. A subset of female mice was ovariectomized (OVX). Acute hippocampal slices from Thy1-GCaMP6s mice were treated with either DMSO or TC-2153 (10 µM) for 1 h, and then incubated in artificial cerebrospinal fluid (ACSF) and potassium chloride (15 mM) for 2 min prior to live calcium imaging. Pyramidal neurons in dissociated rat hippocampal culture (DIV 8-10) were pre-treated with DMSO or TC-2153 (10 µM) for 1 h before whole-cell patch-clamp recording. RESULTS: TC-2153 treatment significantly reduced KA-induced seizure severity, with greater trend seen in female mice. OVX abolished this TC-2153-induced decrease in seizure severity in female mice. TC-2153 application significantly decreased overall excitability of acute hippocampal slices from both sexes. Surprisingly, TC-2153 treatment hyperpolarized resting membrane potential and decreased firing rate, sag voltage, and hyperpolarization-induced current (Ih ) of cultured hippocampal pyramidal neurons. SIGNIFICANCE: This study is the first to demonstrate that pharmacological inhibition of STEP with TC-2153 decreases seizure severity and hippocampal activity in both sexes, and dampens hippocampal neuronal excitability and Ih . We propose that the antiseizure effects of TC-2153 are mediated by its unexpected action on suppressing neuronal intrinsic excitability.


Assuntos
Dimetil Sulfóxido , Hipocampo , Animais , Benzotiepinas , Dimetil Sulfóxido/efeitos adversos , Dimetil Sulfóxido/metabolismo , Feminino , Ácido Caínico/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Convulsões/induzido quimicamente , Convulsões/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911751

RESUMO

Epileptic encephalopathy (EE) is characterized by seizures that respond poorly to antiseizure drugs, psychomotor delay, and cognitive and behavioral impairments. One of the frequently mutated genes in EE is KCNQ2, which encodes the Kv7.2 subunit of voltage-gated Kv7 potassium channels. Kv7 channels composed of Kv7.2 and Kv7.3 are enriched at the axonal surface, where they potently suppress neuronal excitability. Previously, we reported that the de novo dominant EE mutation M546V in human Kv7.2 blocks calmodulin binding to Kv7.2 and axonal surface expression of Kv7 channels via their intracellular retention. However, whether these pathogenic mechanisms underlie epileptic seizures and behavioral comorbidities remains unknown. Here, we report conditional transgenic cKcnq2+/M547V mice, in which expression of mouse Kv7.2-M547V (equivalent to human Kv7.2-M546V) is induced in forebrain excitatory pyramidal neurons and astrocytes. These mice display early mortality, spontaneous seizures, enhanced seizure susceptibility, memory impairment, and repetitive behaviors. Furthermore, hippocampal pathology shows widespread neurodegeneration and reactive astrocytes. This study demonstrates that the impairment in axonal surface expression of Kv7 channels is associated with epileptic seizures, cognitive and behavioral deficits, and neuronal loss in KCNQ2-related EE.


Assuntos
Síndromes Epilépticas/genética , Canal de Potássio KCNQ2/genética , Proteínas do Tecido Nervoso/genética , Animais , Comportamento Animal , Disfunção Cognitiva , Síndromes Epilépticas/patologia , Síndromes Epilépticas/psicologia , Feminino , Gliose , Hipocampo/patologia , Canal de Potássio KCNQ2/metabolismo , Ácido Caínico , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/metabolismo
10.
Commun Biol ; 4(1): 1189, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650221

RESUMO

Phosphatidylinositol-4,5-bisphosphate (PIP2) is a signaling lipid which regulates voltage-gated Kv7/KCNQ potassium channels. Altered PIP2 sensitivity of neuronal Kv7.2 channel is involved in KCNQ2 epileptic encephalopathy. However, the molecular action of PIP2 on Kv7.2 gating remains largely elusive. Here, we use molecular dynamics simulations and electrophysiology to characterize PIP2 binding sites in a human Kv7.2 channel. In the closed state, PIP2 localizes to the periphery of the voltage-sensing domain (VSD). In the open state, PIP2 binds to 4 distinct interfaces formed by the cytoplasmic ends of the VSD, the gate, intracellular helices A and B and their linkers. PIP2 binding induces bilayer-interacting conformation of helices A and B and the correlated motion of the VSD and the pore domain, whereas charge-neutralizing mutations block this coupling and reduce PIP2 sensitivity of Kv7.2 channels by disrupting PIP2 binding. These findings reveal the allosteric role of PIP2 in Kv7.2 channel activation.


Assuntos
Canal de Potássio KCNQ2/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Sítios de Ligação , Humanos , Simulação de Dinâmica Molecular
11.
J Clin Apher ; 36(6): 831-840, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34463973

RESUMO

INTRODUCTION: Indications for therapeutic plasma exchange (TPE) have expanded over the years, and the number of procedures is expected to have been increased. Apheresis registries can be difficult to sustain due to workload and privacy issues. This study aimed to analyze national claims data to characterize the use of TPE. MATERIALS AND METHODS: Patients who underwent TPE were retrospectively identified between January 2008 and December 2017 from the Korean Health Insurance Review and Assessment Service database. Data of patients' characteristics, primary diagnosis, hospitalization, treatment, and procedures were analyzed. RESULTS: A total of 9944 patients underwent 62 606 TPE procedures. The median number of TPE procedures performed per patient was 5 (interquartile range, 3-7). Fresh frozen plasma (71.4%) was most commonly used as the replacement fluid. The most common indication was renal diseases (36.8%), followed by hepato-biliary (17.6%) and hematological (15.2%) diseases. Increased frequency of renal diseases was the most remarkable change, which increased from 529 (21.2%) procedures in 2008 to 4107 (44.5%) procedures in 2017, reflecting the widespread implementation of ABO-incompatible kidney transplantation. The top five hospitals conducted 59.6% of the procedures, which showed a centralized distribution. CONCLUSIONS: The most common indication was renal diseases. The number of TPE procedures performed annually increased by approximately 3.7 times from 2008 to 2017. This study shows that other than a registry, claims data can be successfully used to analyze various aspects of TPE procedures on a nationwide scale. This approach could be used by other countries, especially those that have national health insurance.


Assuntos
Bases de Dados Factuais , Doenças do Sistema Digestório/terapia , Doenças Hematológicas/terapia , Nefropatias/terapia , Programas Nacionais de Saúde , Troca Plasmática/estatística & dados numéricos , Sistema ABO de Grupos Sanguíneos , Adulto , Incompatibilidade de Grupos Sanguíneos , Doenças do Sistema Digestório/epidemiologia , Feminino , Doenças Hematológicas/epidemiologia , Humanos , Revisão da Utilização de Seguros , Nefropatias/epidemiologia , Transplante de Rim , Masculino , Pessoa de Meia-Idade , República da Coreia/epidemiologia , Fatores de Tempo
12.
J Clin Neurol ; 17(3): 354-362, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34184442

RESUMO

BACKGROUND AND PURPOSE: Cerebral visual impairment (CVI) is an underdiagnosed condition in children, and its assessment tools have focused on older children. We aimed to develop a parental questionnaire for cerebral visual impairment (PQCVI) for screening CVI in young children. METHODS: The PQCVI comprised 23 questions based on a modified version of Houliston and Dutton's questionnaire for older children. The PQCVI with neurocognitive function tests was applied to 201 child-parent pairs with typically developing children younger than 72 months (age 32.4±20.1 months, mean±standard deviation). The children were classified into six age groups. The normative data, cutoff scores, and internal reliability were assessed and item analysis was performed. We referred to the total score for all questions as the cerebral visual function (CVF) score. RESULTS: The normative data showed that the CVF score and the scores corresponding to ventral-stream and dorsal-stream visual functions plausibly increased with age. The scores rapidly reached 90% of their maximum values up to the age of 36 months, after which they increased slowly. Cronbach's alpha for all questions across all age groups was 0.97, showing excellent consistency. The item difficulty and item discrimination coefficients showed that the questions were generally adequate for this age stage. CONCLUSIONS: The PQCVI items produced reliable responses in children younger than 72 months. The rapid increase in scores before the age of 3 years supports the importance of early identification of CVI. Following additional clinical verification, the PQCVI may be useful for CVI screening.

13.
BMC Biol ; 19(1): 109, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020651

RESUMO

BACKGROUND: The amino acid sequence of proteins generally carries all the necessary information for acquisition of native conformations, but the vectorial nature of translation can additionally determine the folding outcome. Such consideration is particularly relevant in human diseases associated to inherited mutations leading to structural instability, aggregation, and degradation. Mutations in the KCNQ2 gene associated with human epilepsy have been suggested to cause misfolding of the encoded Kv7.2 channel. Although the effect on folding of mutations in some domains has been studied, little is known of the way pathogenic variants located in the calcium responsive domain (CRD) affect folding. Here, we explore how a Kv7.2 mutation (W344R) located in helix A of the CRD and associated with hereditary epilepsy interferes with channel function. RESULTS: We report that the epilepsy W344R mutation within the IQ motif of CRD decreases channel function, but contrary to other mutations at this site, it does not impair the interaction with Calmodulin (CaM) in vitro, as monitored by multiple in vitro binding assays. We find negligible impact of the mutation on the structure of the complex by molecular dynamic computations. In silico studies revealed two orientations of the side chain, which are differentially populated by WT and W344R variants. Binding to CaM is impaired when the mutated protein is produced in cellulo but not in vitro, suggesting that this mutation impedes proper folding during translation within the cell by forcing the nascent chain to follow a folding route that leads to a non-native configuration, and thereby generating non-functional ion channels that fail to traffic to proper neuronal compartments. CONCLUSIONS: Our data suggest that the key pathogenic mechanism of Kv7.2 W344R mutation involves the failure to adopt a configuration that can be recognized by CaM in vivo but not in vitro.


Assuntos
Epilepsia , Canal de Potássio KCNQ2/genética , Sequência de Aminoácidos , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Epilepsia/genética , Humanos , Canal de Potássio KCNQ2/metabolismo , Mutação
14.
ACS Sens ; 6(5): 1864-1874, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33882232

RESUMO

Primary neuronal cultures have been widely used to study neuronal morphology, neurophysiology, neurodegenerative processes, and molecular mechanism of synaptic plasticity underlying learning and memory. However, the unique behavioral properties of neurons make them challenging to study, with phenotypic differences expressed as subtle changes in neuronal arborization rather than easy-to-assay features such as cell count. The need to analyze morphology, growth, and intracellular transport has motivated the development of increasingly sophisticated microscopes and image analysis techniques. Due to its high-contrast, high-specificity output, many assays rely on confocal fluorescence microscopy, genetic methods, or antibody staining techniques. These approaches often limit the ability to measure quantitatively dynamic activity such as intracellular transport and growth. In this work, we describe a method for label-free live-cell cell imaging with antibody staining specificity by estimating the associated fluorescence signals via quantitative phase imaging and deep convolutional neural networks. This computationally inferred fluorescence image is then used to generate a semantic segmentation map, annotating subcellular compartments of live unlabeled neural cultures. These synthetic fluorescence maps were further applied to study the time-lapse development of hippocampal neurons, highlighting the relationships between the cellular dry mass production and the dynamic transport activity within the nucleus and neurites. Our implementation provides a high-throughput strategy to analyze neural network arborization dynamically, with high specificity and without the typical phototoxicity and photobleaching limitations associated with fluorescent markers.


Assuntos
Neuritos , Neurônios , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Microscopia de Fluorescência
15.
Inquiry ; 58: 469580211010429, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33874765

RESUMO

Rehabilitation exercise is effective for improving the health of persons with physical disabilities. However, there are limited studies on their perception of exercise equipment use. The purpose of this study was to investigate the subjectivity to understand the types of perceptions of individuals with physical disabilities regarding the use of exercise equipment in South Korea. This study used Q-methodology. A literature review and focus group interviews with individuals with physical disabilities were conducted to construct Q-Population. Q-statements were selected from the Q-population, after which Q-sorting was executed by P-sample. The results indicated 4 perception types: (1) "Independent user," (2) "Practical user," (3) "Motivational user," and (4) "Convenience user." Recommendations were provided for developing exercise equipment for use by individuals with physical disabilities. This study revealed 4 perception categories and the findings have strong potential to contribute to the development of proper services and the effective utilization of exercise equipment for individuals with physical disabilities.


Assuntos
Pessoas com Deficiência , Grupos Focais , Humanos , Percepção , República da Coreia
16.
Front Physiol ; 11: 568667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071824

RESUMO

Activity-dependent persistent changes in neuronal intrinsic excitability and synaptic strength are widely thought to underlie learning and memory. Voltage-gated KCNQ/Kv7 potassium channels have been of great interest as the potential targets for memory disorders due to the beneficial effects of their antagonists in cognition. Importantly, de novo dominant mutations in their neuronal subunits KCNQ2/Kv7.2 and KCNQ3/Kv7.3 are associated with epilepsy and neurodevelopmental disorder characterized by developmental delay and intellectual disability. The role of Kv7 channels in neuronal excitability and epilepsy has been extensively studied. However, their functional significance in neural plasticity, learning, and memory remains largely unknown. Here, we review recent studies that support the emerging roles of Kv7 channels in intrinsic and synaptic plasticity, and their contributions to cognition and behavior.

17.
Anal Chem ; 92(18): 12226-12234, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786447

RESUMO

Stochastic particle impact electrochemistry (SPIE) is considered one of the most important electro-analytical methods to understand the physicochemical properties of single entities. SPIE of individual insulating particles (IPs) has been particularly crucial for analyses of bioparticles. In this article, we introduce stochastic particle approach electrochemistry (SPAE) for electrochemical analyses of IPs, which is the advanced version of SPIE; SPAE is analogous to SPIE but focuses on deciphering a sudden current drop (SCD) by an IP-approach toward the edge of an ultramicroelectrode (UME). Polystyrene particles (PSPs) with and without different surface functionalities (-COOH and - NH3) as well as fixed human platelets (F-HPs) were used as model IPs. From theory based on finite element analysis, a sudden current drop (SCD) induced by an IP during electro-oxidation (or reduction) of a redox mediator on a UME can represent the rapid approach of an IP toward an edge of a UME, where a strong electric field is generated. It is also found that the amount of current drop, idrop, of an SCD depends strongly on both the size of an IP and the concentration of redox electrolyte. From simulations based on the SPAE model that fit the experimentally obtained SCDs of three types of PSPs or F-HP dispersed in solutions with two redox electrolytes, their size distribution histograms are estimated, from which their average radii determined by SPAE are compared to those from scanning electron microscopic images. In addition, the drift velocity and corresponding electric force of the PSPs and F-HPs during their approach toward an edge of a Pt UME are estimated, which cannot be addressed currently with SPIE. We further learned that the estimated drift velocity and the corresponding electric force could provide a relative order of the number of excess surface charges on the IPs.


Assuntos
Técnicas Eletroquímicas , Poliestirenos/análise , Eletricidade , Humanos , Microeletrodos , Tamanho da Partícula , Processos Estocásticos , Propriedades de Superfície
18.
Clin Exp Pediatr ; 63(11): 438-446, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32683817

RESUMO

BACKGROUND: Most developmental screening tools in Korea are adopted from foreign tests. To ensure efficient screening of infants and children in Korea, a nationwide screening tool with high reliability and validity is needed. PURPOSE: This study aimed to independently develop, standardize, and validate the Korean Developmental Screening Test for Infants and Children (K-DST) for screening infants and children for neurodevelopmental disorders in Korea. METHODS: The standardization and validation conducted in 2012-2014 of 3,284 subjects (4-71 months of age) resulted in the first edition of the K-DST. The restandardization and revalidation performed in 2015-2016 of 3.06 million attendees of the National Health Screening Program for Infants and Children resulted in the revised K-DST. We analyzed inter-item consistency and test-retest reliability for the reliability analysis. Regarding the validation of K-DST, we examined the construct validity, sensitivity and specificity, receiver operating characteristic curve analysis, and a criterion-related validity analysis. RESULTS: We ultimately selected 8 questions in 6 developmental domains. For most age groups and each domain, internal consistency was 0.73-0.93 and test-retest reliability was 0.77-0.88. The revised K-DST had high discriminatory ability with a sensitivity of 0.833 and specificity of 0.979. The test supported construct validity by distinguishing between normal and neurodevelopmentally delayed groups. The language and cognition domain of the revised K-DST was highly correlated with the K-Bayley Scales of Infant Development-II's Mental Age Quotient (r=0.766, 0.739), while the gross and fine motor domains were highly correlated with Motor Age Quotient (r=0.695, 0.668), respectively. The Verbal Intelligence Quotient of Korean Wechsler Preschool and Primary Scales of Intelligence was highly correlated with the K-DST cognition and language domains (r=0.701, 0.770), as was the performance intelligence quotient with the fine motor domain (r=0.700). CONCLUSION: The K-DST is reliable and valid, suggesting its good potential as an effective screening tool for infants and children with neurodevelopmental disorders in Korea.

19.
Sci Rep ; 10(1): 10475, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32572136

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
ACS Nano ; 14(7): 8343-8358, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32525656

RESUMO

Quantum dots (QDs) are nanocrystals with bright fluorescence and long-term photostability, attributes particularly beneficial for single-molecule imaging and molecular counting in the life sciences. The size of a QD nanocrystal determines its physicochemical and photophysical properties, both of which dictate the success of imaging applications. Larger nanocrystals typically have better optical properties, with higher brightness, red-shifted emission, reduced blinking, and greater stability. However, larger nanocrystals introduce molecular-labeling biases due to steric hindrance and nonspecific binding. Here, we systematically analyze the impact of nanocrystal size on receptor labeling in live and fixed cells. We designed three (core)shell QDs with red emission (600-700 nm) and crystalline sizes of 3.2, 5.5, and 8.3 nm. After coating with the same multidentate polymer, hydrodynamic sizes were 9.2 nm (QD9.2), 13.3 nm (QD13.3), and 17.4 nm (QD17.4), respectively. The QDs were conjugated to streptavidin and applied as probes for biotinylated neurotransmitter receptors. QD9.2 exhibited the highest labeling specificity for receptors in the narrow synaptic cleft (∼20-30 nm) in living neurons. However, for dense receptor labeling for molecular counting in live and fixed HeLa cells, QD13.3 yielded the highest counts. Nonspecific binding rose sharply for hydrodynamic sizes larger than 13.3 nm, with QD17.4 exhibiting particularly diminished specificity. Our comparisons further highlight needs to continue engineering the smallest QDs to increase single-molecule intensity, suppress blinking frequency, and inhibit nonspecific labeling in fixed and permeabilized cells. These results lay a foundation for designing QD probes with further reduced sizes to achieve unbiased labeling for quantitative and single-molecule imaging.


Assuntos
Nanopartículas , Pontos Quânticos , Diagnóstico por Imagem , Células HeLa , Humanos , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA