Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Front Mol Biosci ; 10: 1198079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363403

RESUMO

Vascular endothelial cells are exposed to mechanical forces due to their presence at the interface between the vessel wall and flowing blood. The patterns of these mechanical forces (laminar vs. turbulent) regulate endothelial cell function and play an important role in determining endothelial phenotype and ultimately cardiovascular health. One of the key transcriptional mediators of the positive effects of laminar flow patterns on endothelial cell phenotype is the zinc-finger transcription factor, krüppel-like factor 2 (KLF2). Given its importance in maintaining a healthy endothelium, we sought to identify endothelial regulators of the KLF2 transcriptional program as potential new therapeutic approaches to treating cardiovascular disease. Using an approach that utilized both bioinformatics and targeted gene knockdown, we identified endothelial GPCRs capable of modulating KLF2 expression. Genetic screening using siRNAs directed to these GPCRs identified 12 potential GPCR targets that could modulate the KLF2 program, including a subset capable of regulating flow-induced KLF2 expression in primary endothelial cells. Among these targets, we describe the ability of several GPCRs (GPR116, SSTR3, GPR101, LGR4) to affect KLF2 transcriptional activation. We also identify these targets as potential validated targets for the development of novel treatments targeting the endothelium. Finally, we highlight the initiation of drug discovery efforts for LGR4 and report the identification of the first known synthetic ligands to this receptor as a proof-of-concept for pathway-directed phenotypic screening to identify novel drug targets.

2.
Life (Basel) ; 12(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36013379

RESUMO

Peroxidases and laccases are oxidative enzymes involved in physiological processes in plants, covering responses to biotic and abiotic stress as well as biosynthesis of health-promoting specialized metabolites. Although they are thought to be involved in the biosynthesis of (+)-pinoresinol, a comprehensive investigation of this class of enzymes has not yet been conducted in the emerging oil crop sesame and no information is available regarding the potential (+)-pinoresinol synthase genes in this crop. In the present study, we conducted a pan-genome-wide identification of peroxidase and laccase genes coupled with transcriptome profiling of diverse sesame varieties. A total of 83 and 48 genes have been identified as coding for sesame peroxidase and laccase genes, respectively. Based on their protein domain and Arabidopsis thaliana genes used as baits, the genes were classified into nine and seven groups of peroxidase and laccase genes, respectively. The expression of the genes was evaluated using dynamic transcriptome sequencing data from six sesame varieties, including one elite cultivar, white vs black seed varieties, and high vs low oil content varieties. Two peroxidase genes (SiPOD52 and SiPOD63) and two laccase genes (SiLAC1 and SiLAC39), well conserved within the sesame pan-genome and exhibiting consistent expression patterns within sesame varieties matching the kinetic of (+)-pinoresinol accumulation in seeds, were identified as potential (+)-pinoresinol synthase genes. Cis-acting elements of the candidate genes revealed their potential involvement in development, hormonal signaling, and response to light and other abiotic triggers. Transcription factor enrichment analysis of promoter regions showed the predominance of MYB binding sequences. The findings from this study pave the way for lignans-oriented engineering of sesame with wide potential applications in food, health and medicinal domains.

3.
J Exp Med ; 218(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34106206

RESUMO

As indicated by its name, V-domain Ig suppressor of T cell activation (VISTA) is thought to serve primarily as an inhibitory protein that limits immune responses. VISTA antibodies can dampen the effects of several concomitantly elicited activation signals, including TCR and TLR activation, but it is currently unclear if VISTA agonism could singly affect immune cell biology. In this study, we discovered two novel VISTA antibodies and characterized their effects on human peripheral blood mononuclear cells by scRNA/CITE-seq. Both antibodies appeared to agonize VISTA in an Fc-functional manner to elicit transcriptional and functional changes in monocytes consistent with activation. We also used pentameric VISTA to identify Syndecan-2 and several heparan sulfate proteoglycan synthesis genes as novel regulators of VISTA interactions with monocytic cells, adding further evidence of bidirectional signaling. Together, our study highlights several novel aspects of VISTA biology that have yet to be uncovered in myeloid cells and serves as a foundation for future research.


Assuntos
Antígenos B7/metabolismo , Monócitos/metabolismo , Receptores Imunológicos/metabolismo , Anticorpos Monoclonais/metabolismo , Especificidade de Anticorpos/imunologia , Sistemas CRISPR-Cas/genética , Heparitina Sulfato/metabolismo , Humanos , Ligação Proteica , Receptores Fc/metabolismo , Sindecana-2/metabolismo , Transcrição Gênica , Transcriptoma/genética
4.
PLoS One ; 15(3): e0228221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32155151

RESUMO

Inflammatory bowel diseases (IBD) are complex, multifactorial disorders characterized by chronic relapsing intestinal inflammation. IBD is diagnosed around 1 in 1000 individuals in Western countries with globally increasing incident rates. Association studies have identified hundreds of genes that are linked to IBD and potentially regulate its pathology. The further dissection of the genetic network underlining IBD pathogenesis and pathophysiology is hindered by the limited capacity to functionally characterize each genetic association, including generating knockout animal models for every associated gene. Cutting-edge CRISPR/Cas9-based technology may transform the field of IBD research by efficiently and effectively introducing genetic alterations. In the present study, we used CRISPR/Cas9-based technologies to genetically modify hematopoietic stem cells. Through cell sorting and bone marrow transplantation, we established a system to knock out target gene expression by over 90% in the immune system of reconstituted animals. Using a CD40-mediated colitis model, we further validated our CRISPR/Cas9-based platform for investigating gene function in experimental IBD. In doing so, we developed a model system that delivers genetically modified mice in a manner much faster than conventional methodology, significantly reducing the time from target identification to in vivo target validation and expediting drug development.


Assuntos
Antígenos CD40/imunologia , Sistemas CRISPR-Cas/genética , Células-Tronco Hematopoéticas/metabolismo , Animais , Antígenos CD40/metabolismo , Colite/imunologia , Colite/terapia , Regulação da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Camundongos
5.
CRISPR J ; 2: 230-245, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31436504

RESUMO

Genome-wide CRISPR-Cas9 essentiality screening represents a powerful approach to identify genetic vulnerabilities in cancer cells. Here, we applied this technology and designed a strategy to identify target genes that are synthetic lethal (SL) with von Hippel-Lindau (VHL) tumor suppressor gene. Inactivation of VHL has been frequently found in clear cell renal cell carcinoma. Its SL partners serve as potential drug targets for the development of targeted cancer therapies. We performed parallel genome-wide CRISPR screens in two pairs of isogenic clear cell renal cell carcinoma cell lines that differ only in the VHL status. Comparative analyses of screening results not only confirmed a well-known role for mTOR signaling in renal carcinoma, but also identified DNA damage response and selenocysteine biosynthesis pathways as novel SL targets in VHL-inactivated cancer cells. Follow-up studies provided cellular and mechanistic insights into SL interactions of these pathway genes with the VHL gene. Our CRISPR and RNA-seq datasets provide a rich resource for future investigation of the function of the VHL tumor suppressor protein. Our work demonstrates the efficiency of CRISPR-based synthetic lethality screening in human isogenic cell pairs. Similar strategies could be employed to unveil SL partners with other oncogenic drivers.


Assuntos
Reparo do DNA , Selenocisteína/biossíntese , Transdução de Sinais , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Sistemas CRISPR-Cas , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Edição de Genes , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Análise de Sequência de RNA , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Doença de von Hippel-Lindau/genética , Doença de von Hippel-Lindau/metabolismo
6.
Int J Mol Sci ; 20(10)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137840

RESUMO

Bakanae disease (BD), caused by the fungal pathogen Fusarium fujikuroi, has become a serious threat in rice-cultivating regions worldwide. In the present study, quantitative trait locus (QTL) mapping was performed using F2 and F3 plants derived after crossing a BD-resistant and a BD-susceptible Korean japonica rice variety, 'Samgwang' and 'Junam', respectively. Resequencing of 'Junam' and 'Samgwang' genomes revealed 151,916 DNA polymorphisms between the two varieties. After genotyping 188 F2 plants, we constructed a genetic map comprising 184 markers, including 175 kompetitive allele-specific PCR markers, eight cleaved amplified polymorphic sequence (CAPS) markers, and a derived CAPS (dCAPS) marker. The degree of BD susceptibility of each F2 plant was evaluated on the basis of the mortality rate measured with corresponding F3 progeny seedlings by in vitro screening. Consequently, qFfR9, a major QTL, was discovered at 30.1 centimorgan (cM) on chromosome 9 with a logarithm of the odds score of 60.3. For the QTL interval, 95% probability lay within a 7.24-7.56 Mbp interval. In this interval, we found that eight genes exhibited non-synonymous single nucleotide polymorphisms (SNPs) by comparing the 'Junam' and 'Samgwang' genome sequence data, and are possibly candidate genes for qFfR9; therefore, qFfR9 could be utilized as a valuable resource for breeding BD-resistant rice varieties.


Assuntos
Resistência à Doença , Oryza/genética , Locos de Características Quantitativas , Fusarium/patogenicidade , Genoma de Planta , Oryza/imunologia , Oryza/microbiologia , Polimorfismo de Nucleotídeo Único
7.
ACS Chem Biol ; 14(5): 857-872, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30938974

RESUMO

Interleukin-17A (IL17A) plays a critical role in the development of numerous autoimmune diseases, including psoriasis. The clinical success of IL17A neutralizing biologics in psoriasis has underlined its importance as a drug discovery target. While many studies have focused on the differentiation and trafficking of IL17A producing T-helper 17 cells, less is known about IL17A-initiated signaling events in stromal and parenchymal cells leading to psoriatic phenotypes. We sought to discover signaling nodes downstream of IL17A contributing to disease pathogenesis. Using IL17A and tumor necrosis factor α (TNF) to stimulate primary human epidermal keratinocytes, we employed two different phenotypic screening approaches. First, a library of ∼22000 annotated compounds was screened for reduced secretion of the pro-inflammatory chemokine IL8. Second, a library of 729 kinases was screened in a pooled format by utilizing CRISPR-Cas9 and monitoring IL8 intracellular staining. The highest-ranking novel hits identified in both screens were the bromodomain and extra-terminal domain (BET) family proteins and bromodomain-containing protein 2 (BRD2), respectively. Comparison of BRD2, BRD3, and BRD4 silencing with siRNA and CRISPR confirmed that BRD2 was responsible for mediating IL8 production. Pan-BRD inhibitors and BRD2 knockout also reduced IL17A/TNF-mediated CXC motif chemokines 1/2/6 (CXCL1/2/6) and granulocyte colony stimulating factor (G-CSF) production. In RNA-Seq analysis, 438 IL17A/TNF dependent genes were reduced in BRD2-deficient primary keratinocytes. KEGG pathway analysis of these genes showed enrichment in TNF signaling and rheumatoid arthritis relevant genes. Moreover, a number of genes important for keratinocyte homeostasis and cornification were dysregulated in BRD2-deficient keratinocytes. In IL17A/TNF/IL22 stimulated three-dimensional organotypic raft cultures, pan-BRD inhibition reduced inflammatory factor production but elicited aberrant cornification, consistent with RNA-Seq analysis. These studies highlight a novel role for BRDs and BRD2 in particular in IL17A-mediated inflammatory signaling.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Inflamação/metabolismo , Interleucina-17/metabolismo , Queratinócitos/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular , Células Cultivadas , Técnicas de Silenciamento de Genes , Homeostase , Humanos , Queratinócitos/citologia , RNA Interferente Pequeno/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
BMC Genomics ; 20(1): 225, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890156

RESUMO

BACKGROUND: Large-scale genetic screening using CRISPR-Cas9 technology has emerged as a powerful approach to uncover and validate gene functions. The ability to control the timing of genetic perturbation during CRISPR screens will facilitate precise dissection of dynamic and complex biological processes. Here, we report the optimization of a drug-inducible CRISPR-Cas9 system that allows high-throughput gene interrogation with a temporal control. RESULTS: We designed multiple drug-inducible sgRNA expression vectors and measured their activities using an EGFP gene disruption assay in 11 human and mouse cell lines. The optimal design allows for a tight and inducible control of gene knockout in vitro, and in vivo during a seven-week-long experiment following hematopoietic reconstitution in mice. We next performed parallel genome-wide loss-of-function screens using the inducible and constitutive CRISPR-Cas9 systems. In proliferation-based dropout screens, these two approaches have similar performance in discriminating essential and nonessential genes. In a more challenging phenotypic assay that requires cytokine stimulation and cell staining, we observed similar sensitivity of the constitutive and drug-induced screening approaches in detecting known hits. Importantly, we demonstrate minimal leakiness of our inducible CRISPR screening platforms in the absence of chemical inducers in large-scale settings. CONCLUSIONS: In this study, we have developed a drug-inducible CRISPR-Cas9 system that shows high cleavage efficiency upon induction but low background activity. Using this system, we have achieved inducible gene disruption in a wide range of cell types both in vitro and in vivo. For the first time, we present a systematic side-by-side comparison of constitutive and drug-inducible CRISPR-Cas9 platforms in large-scale functional screens. We demonstrate the tightness and efficiency of our drug-inducible CRISPR-Cas9 system in genome-wide pooled screening. Our design increases the versatility of CRISPR-based genetic screening and represents a significant upgrade on existing functional genomics toolbox.


Assuntos
Sistemas CRISPR-Cas , Carcinoma de Células Renais/genética , Receptores ErbB/antagonistas & inibidores , Marcação de Genes/métodos , Testes Genéticos/métodos , Neoplasias Renais/genética , Inibidores de Proteínas Quinases/farmacologia , Animais , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Proliferação de Células , Células Cultivadas , Receptores ErbB/genética , Genoma , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Camundongos
9.
J Microbiol Biotechnol ; 27(12): 2241-2244, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29025256

RESUMO

The structure of concanavalin A (ConA) has been studied intensively owing to its specific interactions with carbohydrates and its heterometal (Ca²âº and Mn²âº) coordination. Most structures from X-ray crystallography have shown ConA as a dimer or tetramer, because the complex formation requires specific crystallization conditions. Here, we reported the monomeric structure of ConA with a resolution of 1.6 Å, which revealed that metal coordination could trigger sugar-binding ability. The calcium coordination residue, Asn14, changed the orientation of carbohydrate-binding residues and biophysical details, including structural information, providing valuable clues for the development and application of detection kits using ConA.


Assuntos
Canavalia/química , Concanavalina A/química , Concanavalina A/isolamento & purificação , Sítios de Ligação , Cálcio/química , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Lectinas , Substâncias Macromoleculares , Manganês/química , Modelos Moleculares , Conformação Proteica , Açúcares/metabolismo
10.
J Plant Physiol ; 206: 133-142, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27770750

RESUMO

High salinity is a major abiotic stress that affects the growth and development of plants. This type of stress can influence flowering, the production of crops, defense mechanisms and other physiological processes. Previous studies have attempted to elucidate salt-tolerance mechanisms to improve plant growth and productivity in the presence of sodium chloride. One such plant that has been studied in detail is Salicornia, a well-known halophyte, which has adapted to grow in the presence of high salt. To further the understanding of how Salicornia grows and develops under high saline conditions, Salicornia herbacea (S. herbacea) was grown under varying saline concentrations (0, 50, 100, 200, 300, and 400mM), and the resulting phenotype, ion levels, and metabolites were investigated. The optimal condition for the growth of S. herbacea was determined to be 100mM NaCl, and increased salt concentrations directly decreased the internal concentrations of other inorganic ions including Ca2+, K+, and Mg2+. Metabolomics were performed on the roots of the plant as a systematic metabolomics study has not yet been reported for Salicornia roots. Using ethylacetate and methanol extraction followed by high resolution ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS), 1793 metabolites were identified at different NaCl levels. Structural and functional analyses demonstrated that the concentration of 53 metabolites increased as the concentration of NaCl increased. These metabolites have been linked to stress responses, primarily oxidative stress responses, which increase under saline stress. Most metabolites can be classified as polyols, alkaloids, and steroids. Functional studies of these metabolites show that shikimic acid, vitamin K1, and indole-3-carboxylic acid are generated as a result of defense mechanisms, including the shikimate pathway, to protect against reactive oxygen species (ROS) generated by salt stress. This metabolite profiling provides valuable information on the salt-tolerance mechanisms of S. herbacea and may be applied to bioengineer plants with improved salt tolerance.


Assuntos
Chenopodiaceae/metabolismo , Metaboloma , Raízes de Plantas/metabolismo , Salinidade , Tolerância ao Sal , Estresse Fisiológico/efeitos dos fármacos , Alcaloides/metabolismo , Aminoácidos Aromáticos/metabolismo , Chenopodiaceae/efeitos dos fármacos , Chenopodiaceae/crescimento & desenvolvimento , Chenopodiaceae/fisiologia , Indóis/metabolismo , Metaboloma/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Polímeros/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/metabolismo , Cloreto de Sódio/farmacologia
11.
J Med Food ; 18(3): 314-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25469660

RESUMO

Rice (Oryza sativa L.) has been a major dietary staple worldwide for centuries. Growing interest in the beneficial effects of antioxidants has inspired investigation of rice hulls as an attractive source of chemopreventive compounds for breast cancer intervention. We prepared methanol extracts from rice hulls of three Korean bred cultivars (japonica), Ilpum, Heugjinju, and Jeogjinju, and one japonica weedy rice, WD-3. We examined the antiproliferative potential of the hull extracts on MCF-7 human breast cancer cells and the related mechanisms thereof. Hull extracts inhibited proliferation of the cells and mediated G0/G1 phase arrest by suppressing cyclins and cyclin-dependent kinases, where WD-3 extract showed the most potent. Blockage of p21 expression by small interfering RNA transfection attenuated G1 phase arrest induced by WD-3 extract. The WD-3 extract exhibited greater antioxidant potential and total phenolic compounds, compared with other rice hulls. Gas chromatography-mass spectrometry analysis for the F4 fractioned from WD-3 extract revealed that cinnamic acid derivatives were the major active constituents. The F4 fraction most potently inhibited proliferation of MCF-7 cells than WD-3 extract through the suppression of cell cycle regulatory factors. Collectively, our results suggest that the pigmented rice hulls possess greater antioxidant and chemopreventive activity against breast cancer than the other rice cultivars tested, demonstrating that WD-3 rice hulls are an attractive source of chemopreventive bioactive compounds.


Assuntos
Antioxidantes/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Oryza/química , Fitoterapia , Extratos Vegetais/uso terapêutico , Sementes/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Antioxidantes/análise , Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Feminino , Fase G1/efeitos dos fármacos , Humanos , Células MCF-7 , Oryza/classificação , Fenóis/análise , Fenóis/farmacologia , Fenóis/uso terapêutico , Extratos Vegetais/farmacologia , Especificidade da Espécie
12.
F1000Res ; 2: 134, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358901

RESUMO

The inability of targeted BRAF inhibitors to produce long-lasting improvement in the clinical outcome of melanoma highlights a need to identify additional approaches to inhibit melanoma growth. Recent studies have shown that activation of the Wnt/ß-catenin pathway decreases tumor growth and cooperates with ERK/MAPK pathway inhibitors to promote apoptosis in melanoma. Therefore, the identification of Wnt/ß-catenin regulators may advance the development of new approaches to treat this disease. In order to move towards this goal we performed a large scale small-interfering RNA (siRNA) screen for regulators of ß-catenin activated reporter activity in human HT1080 fibrosarcoma cells. Integrating large scale siRNA screen data with phosphoproteomic data and bioinformatics enrichment identified a protein, FAM129B, as a potential regulator of Wnt/ß-catenin signaling.  Functionally, we demonstrated that siRNA-mediated knockdown of FAM129B in A375 and A2058 melanoma cell lines inhibits WNT3A-mediated activation of a ß-catenin-responsive luciferase reporter and inhibits expression of the endogenous Wnt/ß-catenin target gene, AXIN2. We also demonstrate that FAM129B knockdown inhibits apoptosis in melanoma cells treated with WNT3A. These experiments support a role for FAM129B in linking Wnt/ß-catenin signaling to apoptosis in melanoma.

13.
Rice (N Y) ; 5(1): 21, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27234243

RESUMO

BACKGROUND: Incidences of weedy rice continuously occurred in paddy fields because its shattering seeds were able to over-winter. In this research, the seed deterioration of weedy rice was investigated compared with cultivated rice, and the wintering characteristics of these two types of rice were investigated with the field wintering test, freezing resistance test, and accelerated aging test. RESULTS: For the wintering test, the seeds of weedy rice were placed on the soil surface of a paddy with cultivated rice seeds during the 2008/2009 and 2009/2010 winter seasons from November to April. The viability of seeds after wintering was 4.3% for cultivated rice, but 92.7% for weedy rice in 2008/2009. In the second wintering test, the seeds were placed under flooded and dry paddy conditions. The seed viability of cultivated rice was 5% in dry paddy and 0.5% in flooded paddy, but weedy rice maintained a high viability during winter of 90% in the dry paddy and 61% in the flooded paddy. Following freezing treatment of the imbibed seeds, the seed viability was 78% for weedy rice and 16% for cultivated rice. The deterioration of seed tissue induced by freezing treatment was observed by the tetrazolium test. In an accelerated aging test at low temperature and soaking conditions, the seed viability of the weedy rice was 40% higher than the cultivated rice 90 days after treatment. During accelerated aging of seeds, the protein content remained higher in the weedy rice compared to the cultivated rice, and fat acidity remained lower in the weedy rice compared to the cultivated rice. Catalase and superoxide dismutase activity of the weedy rice was 4 times higher than that of the cultivated rice, and DPPH radical scavenging activity of the weedy rice was also much higher than for the cultivated rice. CONCLUSION: In conclusion, the superior ability of seed wintering in weedy rice was based on freezing resistibility of embryo cellular tissue and higher antioxidant activity to protect seed deterioration during the winter season.

14.
Assay Drug Dev Technol ; 8(3): 286-94, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20578927

RESUMO

High-throughput siRNA screens are now widely used for identifying novel drug targets and mapping disease pathways. Despite their popularity, there remain challenges related to data variability, primarily due to measurement errors, biological variance, uneven transfection efficiency, the efficacy of siRNA sequences, or off-target effects, and consequent high false discovery rates. Data variability can be reduced if siRNA screens are performed in replicate. Running a large-scale siRNA screen in replicate is difficult, however, because of the technical challenges related to automating complicated steps of siRNA transfection, often with multiplexed assay readouts, and controlling environmental humidity during long incubation periods. Small-molecule screens have greatly benefited in the past decade from assay miniaturization to high-density plates such that 1,536-well nanoplate screenings are now a routine process, allowing fast, efficient, and affordable operations without compromising underlying biology or important assay characteristics. Here, we describe the development of a 1,536-well nanoplate siRNA transfection protocol that utilizes the instruments commonly found in small-molecule high throughput screening laboratories. This protocol was then successfully demonstrated in a triplicate large-scale siRNA screen for the identification of regulators of the Wnt/beta-catenin pathway.


Assuntos
Avaliação Pré-Clínica de Medicamentos/instrumentação , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/fisiologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia , Algoritmos , Animais , Células Cultivadas , Interpretação Estatística de Dados , Biblioteca Gênica , Humanos , Miniaturização , RNA Interferente Pequeno/uso terapêutico , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Transfecção , Células Tumorais Cultivadas , Proteínas Wnt/genética , beta Catenina/genética
15.
Sci Signal ; 1(45): ra12, 2008 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-19001663

RESUMO

The identification and characterization of previously unidentified signal transduction molecules has expanded our understanding of biological systems and facilitated the development of mechanism-based therapeutics. We present a highly validated small interfering RNA (siRNA) screen that functionally annotates the human genome for modulation of the Wnt/beta-catenin signal transduction pathway. Merging these functional data with an extensive Wnt/beta-catenin protein interaction network produces an integrated physical and functional map of the pathway. The power of this approach is illustrated by the positioning of siRNA screen hits into discrete physical complexes of proteins. Similarly, this approach allows one to filter discoveries made through protein-protein interaction screens for functional contribution to the phenotype of interest. Using this methodology, we characterized AGGF1 as a nuclear chromatin-associated protein that participates in beta-catenin-mediated transcription in human colon cancer cells.


Assuntos
Transativadores/metabolismo , Proteínas Wnt/fisiologia , beta Catenina/fisiologia , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/fisiologia , Linhagem Celular Tumoral , Neoplasias do Colo , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteínas Wnt/genética , beta Catenina/genética
16.
J Biomol Screen ; 13(2): 142-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18216392

RESUMO

RNA interference (RNAi), combined with the availability of genome sequences, provides an unprecedented opportunity for the massive and parallel investigations of gene function. Small interfering RNA (siRNA) represents a popular and quick approach of RNAi for in vitro loss-of-function genetic screens. Efficient transfection of siRNA is critical for unambiguous interpretation of screen results and thus overall success of any siRNA screen. A high-throughput, lipid-based transfection method for siRNA was developed that can process eighty 384-well microplates in triplicate (for a total of 30,720 unique transfections) in 8 h. Transfection throughput was limited only by the speed of robotics, whereas the cost of screening was reduced. As a proof of principle, a genome-scale screen with a library of 22,108 siRNAs was performed to identify the genes sensitizing cells to mitomycin C at concentrations of 0, 20, and 60 nM. Transfection efficiency, performances of control siRNAs, and other quality metrics were monitored and demonstrated that the new, optimized transfection protocol produced high-quality results throughout the screen.


Assuntos
Genoma Humano , RNA Interferente Pequeno/farmacologia , Transfecção/métodos , Algoritmos , Automação , Eficiência , Perfilação da Expressão Gênica/métodos , Genoma Humano/efeitos dos fármacos , Células HeLa , Humanos , Transfecção/instrumentação
17.
J Biomol Screen ; 13(2): 149-58, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18216396

RESUMO

High-throughput screening (HTS) of large-scale RNA interference (RNAi) libraries has become an increasingly popular method of functional genomics in recent years. Cell-based assays used for RNAi screening often produce small dynamic ranges and significant variability because of the combination of cellular heterogeneity, transfection efficiency, and the intrinsic nature of the genes being targeted. These properties make reliable hit selection in the RNAi screen a difficult task. The use of robust methods based on median and median absolute deviation (MAD) has been suggested to improve hit selection in such cases, but mean and standard deviation (SD)-based methods are still predominantly used in many RNAi HTS. In an experimental approach to compare these 2 methods, a genome-scale small interfering RNA (siRNA) screen was performed, in which the identification of novel targets increasing the therapeutic index of the chemotherapeutic agent mitomycin C (MMC) was sought. MAD values were resistant to the presence of outliers, and the hits selected by the MAD-based method included all the hits that would be selected by SD-based method as well as a significant number of additional hits. When retested in triplicate, a similar percentage of these siRNAs were shown to genuinely sensitize cells to MMC compared with the hits shared between SD- and MAD-based methods. Confirmed hits were enriched with the genes involved in the DNA damage response and cell cycle regulation, validating the overall hit selection strategy. Finally, computer simulations showed the superiority and generality of the MAD-based method in various RNAi HTS data models. In conclusion, the authors demonstrate that the MAD-based hit selection method rescued physiologically relevant false negatives that would have been missed in the SD-based method, and they believe it to be the desirable 1st-choice hit selection method for RNAi screen results.


Assuntos
Interpretação Estatística de Dados , Perfilação da Expressão Gênica/métodos , Genômica/métodos , RNA Interferente Pequeno/farmacologia , Projetos de Pesquisa , Antibióticos Antineoplásicos/farmacologia , Automação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Simulação por Computador , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Genoma Humano/efeitos dos fármacos , Células HeLa , Humanos , Mitomicina/farmacologia , Transfecção
18.
Mol Cell Biol ; 26(24): 9377-86, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17000754

RESUMO

RNA interference technology allows the systematic genetic analysis of the molecular alterations in cancer cells and how these alterations affect response to therapies. Here we used small interfering RNA (siRNA) screens to identify genes that enhance the cytotoxicity (enhancers) of established anticancer chemotherapeutics. Hits identified in drug enhancer screens of cisplatin, gemcitabine, and paclitaxel were largely unique to the drug being tested and could be linked to the drug's mechanism of action. Hits identified by screening of a genome-scale siRNA library for cisplatin enhancers in TP53-deficient HeLa cells were significantly enriched for genes with annotated functions in DNA damage repair as well as poorly characterized genes likely having novel functions in this process. We followed up on a subset of the hits from the cisplatin enhancer screen and validated a number of enhancers whose products interact with BRCA1 and/or BRCA2. TP53(+/-) matched-pair cell lines were used to determine if knockdown of BRCA1, BRCA2, or validated hits that associate with BRCA1 and BRCA2 selectively enhances cisplatin cytotoxicity in TP53-deficient cells. Silencing of BRCA1, BRCA2, or BRCA1/2-associated genes enhanced cisplatin cytotoxicity approximately 4- to 7-fold more in TP53-deficient cells than in matched TP53 wild-type cells. Thus, tumor cells having disruptions in BRCA1/2 network genes and TP53 together are more sensitive to cisplatin than cells with either disruption alone.


Assuntos
Antineoplásicos/toxicidade , Proteína BRCA1/antagonistas & inibidores , Proteína BRCA2/antagonistas & inibidores , Cisplatino/toxicidade , Neoplasias/tratamento farmacológico , Neoplasias/patologia , RNA Interferente Pequeno/fisiologia , Proteína Supressora de Tumor p53/deficiência , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Células HeLa , Humanos , Neoplasias/genética , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/biossíntese
19.
Pharmacogenomics ; 7(3): 299-309, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16610941

RESUMO

RNA interference (RNAi) high-throughput screening (HTS) experiments carried out using large (>5000 short interfering [si]RNA) libraries generate a huge amount of data. In order to use these data to identify the most effective siRNAs tested, it is critical to adopt and develop appropriate statistical methods. To address the questions in hit selection of RNAi HTS, we proposed a quartile-based method which is robust to outliers, true hits and nonsymmetrical data. We compared it with the more traditional tests, mean +/- k standard deviation (SD) and median +/- 3 median of absolute deviation (MAD). The results suggested that the quartile-based method selected more hits than mean +/- k SD under the same preset error rate. The number of hits selected by median +/- k MAD was close to that by the quartile-based method. Further analysis suggested that the quartile-based method had the greatest power in detecting true hits, especially weak or moderate true hits. Our investigation also suggested that platewise analysis (determining effective siRNAs on a plate-by-plate basis) can adjust for systematic errors in different plates, while an experimentwise analysis, in which effective siRNAs are identified in an analysis of the entire experiment, cannot. However, experimentwise analysis may detect a cluster of true positive hits placed together in one or several plates, while platewise analysis may not. To display hit selection results, we designed a specific figure called a plate-well series plot. We thus suggest the following strategy for hit selection in RNAi HTS experiments. First, choose the quartile-based method, or median +/- k MAD, for identifying effective siRNAs. Second, perform the chosen method experimentwise on transformed/normalized data, such as percentage inhibition, to check the possibility of hit clusters. If a cluster of selected hits are observed, repeat the analysis based on untransformed data to determine whether the cluster is due to an artifact in the data. If no clusters of hits are observed, select hits by performing platewise analysis on transformed data. Third, adopt the plate-well series plot to visualize both the data and the hit selection results, as well as to check for artifacts.


Assuntos
Interferência de RNA/fisiologia , Análise por Conglomerados , Interpretação Estatística de Dados , Avaliação Pré-Clínica de Medicamentos/métodos , Reações Falso-Positivas , Biblioteca Gênica , Humanos
20.
Nature ; 429(6993): 771-6, 2004 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-15175761

RESUMO

Calorie restriction extends lifespan in organisms ranging from yeast to mammals. In yeast, the SIR2 gene mediates the life-extending effects of calorie restriction. Here we show that the mammalian SIR2 orthologue, Sirt1 (sirtuin 1), activates a critical component of calorie restriction in mammals; that is, fat mobilization in white adipocytes. Upon food withdrawal Sirt1 protein binds to and represses genes controlled by the fat regulator PPAR-gamma (peroxisome proliferator-activated receptor-gamma), including genes mediating fat storage. Sirt1 represses PPAR-gamma by docking with its cofactors NCoR (nuclear receptor co-repressor) and SMRT (silencing mediator of retinoid and thyroid hormone receptors). Mobilization of fatty acids from white adipocytes upon fasting is compromised in Sirt1+/- mice. Repression of PPAR-gamma by Sirt1 is also evident in 3T3-L1 adipocytes, where overexpression of Sirt1 attenuates adipogenesis, and RNA interference of Sirt1 enhances it. In differentiated fat cells, upregulation of Sirt1 triggers lipolysis and loss of fat. As a reduction in fat is sufficient to extend murine lifespan, our results provide a possible molecular pathway connecting calorie restriction to life extension in mammals.


Assuntos
Adipócitos/metabolismo , Metabolismo dos Lipídeos , Longevidade/fisiologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Sirtuínas/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Células 3T3-L1 , Animais , Transporte Biológico , Restrição Calórica , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Deleção de Genes , Expressão Gênica , Humanos , Lipólise , Camundongos , Proteínas Nucleares/metabolismo , Correpressor 1 de Receptor Nuclear , Correpressor 2 de Receptor Nuclear , Interferência de RNA , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Resveratrol , Sirtuína 1 , Sirtuínas/deficiência , Sirtuínas/genética , Estilbenos/farmacologia , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA