Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1378565, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812883

RESUMO

Extracellular vesicles mediate intercellular communication by transporting biologically active macromolecules. Our prior studies have demonstrated that the nuclear factor of activated T cell cytoplasmic member 3 (NFATc3) is activated in mouse pulmonary macrophages in response to lipopolysaccharide (LPS). Inhibition of NFATc3 activation by a novel cell-permeable calcineurin peptide inhibitor CNI103 mitigated the development of acute lung injury (ALI) in LPS-treated mice. Although pro-inflammatory lipid mediators are known contributors to lung inflammation and injury, it remains unclear whether the calcineurin-NFATc pathway regulates extracellular vesicle (EV) lipid content and if this content contributes to ALI pathogenesis. In this study, EVs from mouse bronchoalveolar lavage fluid (BALF) were analyzed for their lipid mediators by liquid chromatography in conjunction with mass spectrometry (LC-MS/MS). Our data demonstrate that EVs from LPS-treated mice contained significantly higher levels of arachidonic acid (AA) metabolites, which were found in low levels by prior treatment with CNI103. The catalytic activity of lung tissue cytoplasmic phospholipase A2 (cPLA2) increased during ALI, correlating with an increased amount of arachidonic acid (AA) in the EVs. Furthermore, ALI is associated with increased expression of cPLA2, cyclooxygenase 2 (COX2), and lipoxygenases (5-LOX, 12-LOX, and 15-LOX) in lung tissue, and pretreatment with CNI103 inhibited the catalytic activity of cPLA2 and the expression of cPLA2, COX, and LOX transcripts. Furthermore, co-culture of mouse pulmonary microvascular endothelial cell (PMVEC) monolayer and NFAT-luciferase reporter macrophages with BALF EVs from LPS-treated mice increased the pulmonary microvascular endothelial cell (PMVEC) monolayer barrier permeability and luciferase activity in macrophages. However, EVs from CNI103-treated mice had no negative impact on PMVEC monolayer barrier integrity. In summary, BALF EVs from LPS-treated mice carry biologically active NFATc-dependent, AA-derived lipids that play a role in regulating PMVEC monolayer barrier function.

2.
PLoS One ; 19(4): e0301904, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662666

RESUMO

Our previous research demonstrated that PU.1 regulates expression of the genes involved in inflammation in macrophages. Selective knockdown of PU.1 in macrophages ameliorated LPS-induced acute lung injury (ALI) in bone marrow chimera mice. Inhibitors that block the transcriptional activity of PU.1 in macrophages have the potential to mitigate the pathophysiology of LPS-induced ALI. However, complete inactivation of PU.1 gene disrupts normal myelopoiesis. Although the green tea polyphenol Epigallocatechin gallate (EGCG) has been shown to regulate inflammatory genes in various cell types, it is not known if EGCG alters the transcriptional activity of PU.1 protein. Using Schrodinger Glide docking, we have identified that EGCG binds with PU.1 protein, altering its DNA-binding and self-dimerization activity. In silico analysis shows that EGCG forms Hydrogen bonds with Glutamic Acid 209, Leucine 250 in DNA binding and Lysine 196, Tryptophan 193, and Leucine 182 in the self-dimerization domain of the PU.1 protein. Experimental validation using mouse bone marrow-derived macrophages (BMDM) confirmed that EGCG inhibits both DNA binding by PU.1 and self-dimerization. Importantly, EGCG had no impact on expression of the total PU.1 protein levels but significantly reduced expression of various inflammatory genes and generation of ROS. In summary, we report that EGCG acts as an inhibitor of the PU.1 transcription factor in macrophages.


Assuntos
Catequina , Catequina/análogos & derivados , Macrófagos , Proteínas Proto-Oncogênicas , Transativadores , Catequina/farmacologia , Animais , Transativadores/metabolismo , Transativadores/genética , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Ligação Proteica , DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia
3.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L568-L579, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37697923

RESUMO

The prevalence of electronic cigarette (EC) use among adult with asthma has continued to increase over time, in part due to the belief of being less harmful than smoking. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. In the present project, we tested the hypothesis that EC use contributes to respiratory damage and worsening inflammation in the lungs of patients with asthma. To define the consequences of EC exposure in established asthma, we used a mouse model with/without preexisting asthma for short-term exposure to EC aerosols. C57/BL6J mice were sensitized and challenged with a DRA (dust mite, ragweed, Aspergillus fumigates, 200 µg/mL) mixture and exposed daily to EC with nicotine (2% nicotine in 30:70 propylene glycol: vegetable glycerin) or filtered air for 2 wk. The mice were evaluated at 24 h after the final EC exposure. After EC exposure in asthmatic mice, lung inflammatory cell infiltration and goblet cell hyperplasia were increased, whereas EC alone did not cause airway inflammation. Our data also show that mitochondrial DNA (mtDNA) content and a key mtDNA regulator, mitochondrial transcription factor A (TFAM), are reduced in asthmatic EC-exposed mice in a sex-dependent manner. Together, these results indicate that TFAM loss in lung epithelium following EC contributes to male-predominant sex pathological differences, including mitochondrial damage, inflammation, and remodeling in asthmatic airways.NEW & NOTEWORTHY Respiratory immunity is dysregulated in preexisting asthma, and further perturbations by EC use could exacerbate asthma severity. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. We found that EC has unique biological impacts in lungs and potential sex differences with loss of TFAM, a key mtDNA regulator, in lung epithelial region from our animal EC study.


Assuntos
Asma , Sistemas Eletrônicos de Liberação de Nicotina , Pneumonia , Humanos , Adulto , Masculino , Feminino , Camundongos , Animais , Nicotina/toxicidade , Aerossóis e Gotículas Respiratórios , Asma/patologia , Pulmão/patologia , Pneumonia/patologia , Inflamação/patologia , Modelos Animais de Doenças , DNA Mitocondrial
4.
Nicotine Tob Res ; 25(12): 1904-1908, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349133

RESUMO

INTRODUCTION: Although the greater popularity of electronic cigarettes (EC) among asthmatics is alarming, there is limited knowledge of the long-term consequences of EC exposure in asthmatics. AIMS AND METHODS: Mild asthmatic C57/BL6J adult male and female mice were established by intranasal insufflation with three combined allergens. The asthmatic and age and sex-matched' naïve mice were exposed to air, nicotine-free (propylene glycol [PG]/vegetable glycerin [VG]-only), or PG/VG+Nicotine, 4 hours daily for 3 months. The effects of EC exposure were accessed by measuring cytokines in bronchoalveolar lavage, periodic acid-schiff (PAS) staining, mitochondrial DNA copy numbers (mtCN), and the transcriptome in the lung. Significance was false discovery rate <0.2 for transcriptome and 0.05 for the others. RESULTS: In asthmatic mice, PG/VG+Nicotine increased PAS-positive cells and IL-13 compared to mice exposed to air and PG/VG-only. In naïve mice exposed to PG/VG+Nicotine and PG/VG-only, higher INF-γ was observed compared to mice exposed only to air. PG/VG-only and PG/VG+Nicotine had significantly higher mtCN compared to air exposure in asthmatic mice, while the opposite pattern was observed in non-asthmatic naïve mice. Different gene expression patterns were profoundly found for asthmatic mice exposed to PG/VG+Nicotine compared to PG/VG-only, including genes involved in mitochondrial dysfunction, oxidative phosphorylation, and p21-activated kinase (PAK) signaling. CONCLUSIONS: This study provides experimental evidence of the potential impact of nicotine enhancement on the long-term effects of EC in asthmatics compared to non-asthmatics. IMPLICATIONS: The findings from this study indicate the potential impact of EC in asthmatics by addressing multiple biological markers. The long-term health outcomes of EC in the susceptible group can be instrumental in supporting policymaking and educational campaigns and informing the public, healthcare providers, and EC users about the underlying risks of EC use.


Assuntos
Asma , Sistemas Eletrônicos de Liberação de Nicotina , Masculino , Camundongos , Feminino , Animais , Nicotina/efeitos adversos , Asma/etiologia , Pulmão , Propilenoglicol/farmacologia , Glicerol/farmacologia , Verduras
5.
Kidney Int ; 103(6): 1093-1104, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36921719

RESUMO

Transcriptional profiling studies have identified several protective genes upregulated in tubular epithelial cells during acute kidney injury (AKI). Identifying upstream transcriptional regulators could lead to the development of therapeutic strategies augmenting the repair processes. SOX9 is a transcription factor controlling cell-fate during embryonic development and adult tissue homeostasis in multiple organs including the kidneys. SOX9 expression is low in adult kidneys; however, stress conditions can trigger its transcriptional upregulation in tubular epithelial cells. SOX9 plays a protective role during the early phase of AKI and facilitates repair during the recovery phase. To identify the upstream transcriptional regulators that drive SOX9 upregulation in tubular epithelial cells, we used an unbiased transcription factor screening approach. Preliminary screening and validation studies show that zinc finger protein 24 (ZFP24) governs SOX9 upregulation in tubular epithelial cells. ZFP24, a Cys2-His2 (C2H2) zinc finger protein, is essential for oligodendrocyte maturation and myelination; however, its role in the kidneys or in SOX9 regulation remains unknown. Here, we found that tubular epithelial ZFP24 gene ablation exacerbated ischemia, rhabdomyolysis, and cisplatin-associated AKI. Importantly, ZFP24 gene deletion resulted in suppression of SOX9 upregulation in injured tubular epithelial cells. Chromatin immunoprecipitation and promoter luciferase assays confirmed that ZFP24 bound to a specific site in both murine and human SOX9 promoters. Importantly, CRISPR/Cas9-mediated mutation in the ZFP24 binding site in the SOX9 promoter in vivo led to suppression of SOX9 upregulation during AKI. Thus, our findings identify ZFP24 as a critical stress-responsive transcription factor protecting tubular epithelial cells through SOX9 upregulation.


Assuntos
Injúria Renal Aguda , Fatores de Transcrição SOX9 , Animais , Humanos , Camundongos , Injúria Renal Aguda/prevenção & controle , Células Epiteliais/metabolismo , Rim/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Regulação para Cima , Dedos de Zinco
6.
Toxicol Appl Pharmacol ; 462: 116381, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681128

RESUMO

Damage associated molecular patterns (DAMPs) are molecules released from dead/dying cells following toxicant and/or environmental exposures that activate the immune response through binding of pattern recognition receptors (PRRs). Excessive production of DAMPs or failed clearance leads to chronic inflammation and delayed inflammation resolution. One category of DAMPs are oxidized phospholipids (oxPLs) produced upon exposure to high levels of oxidative stress, such as following ozone (O3) induced inflammation. OxPLs are bound by multiple classes of PRRs that include scavenger receptors (SRs) such as SR class B-1 (SR-BI) and toll-like receptors (TLRs). Interactions between oxPLs and PRRs appear to regulate inflammation; however, the role of SR-BI in oxPL-induced lung inflammation has not been defined. Therefore, we hypothesize that SR-BI is critical in protecting the lung from oxPL-induced pulmonary inflammation/injury. To test this hypothesis, C57BL/6J (WT) female mice were dosed with oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (oxPAPC) by oropharyngeal aspiration which increased pulmonary SR-BI expression. Following oxPAPC exposure, SR-BI deficient (SR-BI-/-) mice exhibited increased lung pathology and inflammatory cytokine/chemokine production. Lipidomic analysis revealed that SR-BI-/- mice had an altered pulmonary lipidome prior to and following oxPAPC exposure, which correlated with increased oxidized phosphatidylcholines (PCs). Finally, we characterized TLR4-mediated activation of NF-κB following oxPAPC exposure and discovered that SR-BI-/- mice had increased TLR4 mRNA expression in lung tissue and macrophages, increased nuclear p65, and decreased cytoplasmic IκBα. Overall, we conclude that SR-BI is required for limiting oxPAPC-induced lung pathology by maintaining lipid homeostasis, reducing oxidized PCs, and attenuating TLR4-NF-κB activation, thereby preventing excessive and persistent inflammation.


Assuntos
Fosfolipídeos , Pneumonia , Animais , Feminino , Camundongos , Proteínas de Transporte , Inflamação/induzido quimicamente , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/prevenção & controle , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Receptor 4 Toll-Like/metabolismo
7.
EBioMedicine ; 85: 104301, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36215783

RESUMO

BACKGROUND: Mitochondrial DNA copy number (mtCN) maintains cellular function and homeostasis, and is linked to nuclear DNA methylation and gene expression. Increased mtCN in the blood is associated with smoking and respiratory disease, but has received little attention for target organ effects for smoking or electronic cigarette (EC) use. METHODS: Bronchoscopy biospecimens from healthy EC users, smokers (SM), and never-smokers (NS) were assessed for associations of mtCN with mtDNA point mutations, immune responses, nuclear DNA methylation and gene expression using linear regression. Ingenuity pathway analysis was used for enriched pathways. GEO and TCGA respiratory disease datasets were used to explore the involvement of mtCN-associated signatures. FINDINGS: mtCN was higher in SM than NS, but EC was not statistically different from either. Overall there was a negative association of mtCN with a point mutation in the D-loop but no difference within groups. Positive associations of mtCN with IL-2 and IL-4 were found in EC only. mtCN was significantly associated with 71,487 CpGs and 321 transcripts. 263 CpGs were correlated with nearby transcripts for genes enriched in the immune system. EC-specific mtCN-associated-CpGs and genes were differentially expressed in respiratory diseases compared to controls, including genes involved in cellular movement, inflammation, metabolism, and airway hyperresponsiveness. INTERPRETATION: Smoking may elicit a lung toxic effect through mtCN. While the impact of EC is less clear, EC-specific associations of mtCN with nuclear biomarkers suggest exposure may not be harmless. Further research is needed to understand the role of smoking and EC-related mtCN on lung disease risks. FUNDING: The National Cancer Institute, the National Heart, Lung, and Blood Institute, the Food and Drug Administration Center for Tobacco Products, the National Center For Advancing Translational Sciences, and Pelotonia Intramural Research Funds.


Assuntos
DNA Mitocondrial , Sistemas Eletrônicos de Liberação de Nicotina , Humanos , DNA Mitocondrial/genética , Fumantes , Variações do Número de Cópias de DNA , Biomarcadores , Metilação de DNA , Pulmão , Transcrição Gênica
8.
Front Immunol ; 13: 943554, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958610

RESUMO

Asthma is phenotypically heterogeneous with several distinctive pathological mechanistic pathways. Previous studies indicate that neutrophilic asthma has a poor response to standard asthma treatments comprising inhaled corticosteroids. Therefore, it is important to identify critical factors that contribute to increased numbers of neutrophils in asthma patients whose symptoms are poorly controlled by conventional therapy. Leukocytes release chromatin fibers, referred to as extracellular traps (ETs) consisting of double-stranded (ds) DNA, histones, and granule contents. Excessive components of ETs contribute to the pathophysiology of asthma; however, it is unclear how ETs drive asthma phenotypes and whether they could be a potential therapeutic target. We employed a mouse model of severe asthma that recapitulates the intricate immune responses of neutrophilic and eosinophilic airway inflammation identified in patients with severe asthma. We used both a pharmacologic approach using miR-155 inhibitor-laden exosomes and genetic approaches using miR-155 knockout mice. Our data show that ETs are present in the bronchoalveolar lavage fluid of patients with mild asthma subjected to experimental subsegmental bronchoprovocation to an allergen and a severe asthma mouse model, which resembles the complex immune responses identified in severe human asthma. Furthermore, we show that miR-155 contributes to the extracellular release of dsDNA, which exacerbates allergic lung inflammation, and the inhibition of miR-155 results in therapeutic benefit in severe asthma mice. Our findings show that targeting dsDNA release represents an attractive therapeutic target for mitigating neutrophilic asthma phenotype, which is clinically refractory to standard care.


Assuntos
Asma , Eosinofilia , MicroRNAs , Pneumonia , Animais , Modelos Animais de Doenças , Granulócitos , Humanos , Camundongos , MicroRNAs/metabolismo , Neutrófilos , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo
9.
J Innate Immun ; 14(5): 555-568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35367992

RESUMO

Emerging data support the pivotal role of extracellular vesicles (EVs) in normal cellular physiology and disease conditions. However, despite their abundance, there is much less information about the lipid mediators carried in EVs, especially in the context of acute lung injury (ALI). Our data demonstrate that C57BL/6 mice subjected to intranasal Escherichia coli lipopolysaccharide (LPS)-induced ALI release, a higher number of EVs into the alveolar space, compared to saline-treated controls. EVs released during ALI originated from alveolar epithelial cells, macrophages, and neutrophils and carry a diverse array of lipid mediators derived from ω-3 and ω-6 polyunsaturated fatty acids (PUFA). The eicosanoids in EVs correlated with cellular levels of arachidonic acid, expression of cytosolic phospholipase A2, cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome epoxygenase p450 proteins in pulmonary macrophages. Furthermore, EVs from LPS-toll-like receptor 4 knockout (TLR4-/-) mice contained significantly lower amounts of COX and LOX catalyzed eicosanoids and ω-3 PUFA metabolites. More importantly, EVs from LPS-treated wild-type mice increased TNF-α release by macrophages and reduced alveolar epithelial monolayer barrier integrity compared to EVs from LPS-treated TLR4-/- mice. In summary, our study demonstrates for the first time that the EV carried PUFA metabolite profile in part depends on the inflammatory status of the lung macrophages and modulates pulmonary macrophage and alveolar epithelial cell function during LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Vesículas Extracelulares/metabolismo , Lipidômica , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor 4 Toll-Like/metabolismo
10.
Sci Rep ; 11(1): 9219, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911148

RESUMO

Tumor suppressive microRNAs (miRNAs) are increasingly implicated in the development of anti-tumor therapy by reprogramming gene network that are aberrantly regulated in cancer cells. This study aimed to determine the therapeutic potential of putative tumor suppressive miRNA, miR-138, against glioblastoma (GBM). Whole transcriptome and miRNA expression profiling analyses on human GBM patient tissues identified miR-138 as one of the significantly downregulated miRNAs with an inverse correlation with CD44 expression. Transient overexpression of miR-138 in GBM cells inhibited cell proliferation, cell cycle, migration, and wound healing capability. We unveiled that miR-138 negatively regulates the expression of CD44 by directly binding to the 3' UTR of CD44. CD44 inhibition by miR-138 resulted in an inhibition of glioblastoma cell proliferation in vitro through cell cycle arrest as evidenced by a significant induction of p27 and its translocation into nucleus. Ectopic expression of miR-138 also increased survival rates in mice that had an intracranial xenograft tumor derived from human patient-derived primary GBM cells. In conclusion, we demonstrated a therapeutic potential of tumor suppressive miR-138 through direct downregulation of CD44 for the treatment of primary GBM.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Receptores de Hialuronatos/metabolismo , MicroRNAs/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Receptores de Hialuronatos/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Prognóstico , Taxa de Sobrevida , Transcriptoma , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Innate Immun ; 13(2): 83-93, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33045713

RESUMO

Pulmonary macrophages play a critical role in the recognition of pathogens, initiation of host defense via inflammation, clearance of pathogens from the airways, and resolution of inflammation. Recently, we have shown a pivotal role for the nuclear factor of activated T-cell cytoplasmic member 3 (NFATc3) transcription factor in modulating pulmonary macrophage function in LPS-induced acute lung injury (ALI) pathogenesis. Although the NFATc proteins are activated primarily by calcineurin-dependent dephosphorylation, here we show that LPS induces posttranslational modification of NFATc3 by polyADP-ribose polymerase 1 (PARP-1)-mediated polyADP-ribosylation. ADP-ribosylated NFATc3 showed increased binding to iNOS and TNFα promoter DNA, thereby increasing downstream gene expression. Inhibitors of PARP-1 decreased LPS-induced NFATc3 ribosylation, target gene promoter binding, and gene expression. LPS increased NFAT luciferase reporter activity in lung macrophages and lung tissue that was inhibited by pretreatment with PARP-1 inhibitors. More importantly, pretreatment of mice with the PARP-1 inhibitor olaparib markedly decreased LPS-induced cytokines, protein extravasation in bronchoalveolar fluid, lung wet-to-dry ratios, and myeloperoxidase activity. Furthermore, PARP-1 inhibitors decreased NF-кB luciferase reporter activity and LPS-induced ALI in NF-кB reporter mice. Thus, our study demonstrates that inhibiting NFATc3 and NF-кB polyADP-ribosylation with PARP-1 inhibitors prevented LPS-induced ALI pathogenesis.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Inflamação/genética , Pulmão/imunologia , Macrófagos/imunologia , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Edema Pulmonar/imunologia , Lesão Pulmonar Aguda/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli ADP Ribosilação
12.
J Med Chem ; 63(21): 12853-12872, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33073986

RESUMO

Acute respiratory distress syndrome (ARDS) is an inflammatory lung disease with a high morbidity and mortality rate, for which no pharmacologic treatment is currently available. Our previous studies discovered that a pivotal step in the disease process is the activation of the nuclear factor of activated T cells (NFAT) c3 in lung macrophages, suggesting that inhibitors against the upstream protein phosphatase calcineurin should be effective for prevention/treatment of ARDS. Herein, we report the development of a highly potent, cell-permeable, and metabolically stable peptidyl inhibitor, CNI103, which selectively blocks the interaction between calcineurin and NFATc3, through computational and medicinal chemistry. CNI103 specifically inhibited calcineurin signaling in vitro and in vivo and exhibited a favorable pharmacokinetic profile, broad tissue distribution following different routes of administration, and minimal toxicity. Our data indicate that CNI103 is a promising novel treatment for ARDS and other inflammatory diseases.


Assuntos
Calcineurina/metabolismo , Fatores de Transcrição NFATC/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Sequência de Aminoácidos , Animais , Sítios de Ligação , Calcineurina/química , Inibidores de Calcineurina/química , Inibidores de Calcineurina/metabolismo , Inibidores de Calcineurina/farmacologia , Inibidores de Calcineurina/uso terapêutico , Meia-Vida , Humanos , Lipopolissacarídeos/toxicidade , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Fatores de Transcrição NFATC/química , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Distribuição Tecidual
13.
Nat Commun ; 11(1): 1924, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317630

RESUMO

Renal tubular epithelial cells (RTECs) perform the essential function of maintaining the constancy of body fluid composition and volume. Toxic, inflammatory, or hypoxic-insults to RTECs can cause systemic fluid imbalance, electrolyte abnormalities and metabolic waste accumulation- manifesting as acute kidney injury (AKI), a common disorder associated with adverse long-term sequelae and high mortality. Here we report the results of a kinome-wide RNAi screen for cellular pathways involved in AKI-associated RTEC-dysfunction and cell death. Our screen and validation studies reveal an essential role of Cdkl5-kinase in RTEC cell death. In mouse models, genetic or pharmacological Cdkl5 inhibition mitigates nephrotoxic and ischemia-associated AKI. We propose that Cdkl5 is a stress-responsive kinase that promotes renal injury in part through phosphorylation-dependent suppression of pro-survival transcription regulator Sox9. These findings reveal a surprising non-neuronal function of Cdkl5, identify a pathogenic Cdkl5-Sox9 axis in epithelial cell-death, and support CDKL5 antagonism as a therapeutic approach for AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Células Epiteliais/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição SOX9/metabolismo , Animais , Morte Celular , Células Epiteliais/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Queratinócitos/metabolismo , Rim/metabolismo , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
14.
Biochem Pharmacol ; 177: 113939, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32229099

RESUMO

Aberrant cell cycle activation is a hallmark of carcinogenesis. Recently three cell cycle targeting cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have been approved for the treatment of metastatic breast cancer. CDK4/6 inhibitors suppress proliferation through inhibition of CDK4/6-dependent retinoblastoma-1 (Rb1) phosphorylation and inactivation, a key regulatory step in G1-to-S-phase transition. Importantly, aberrant cell cycle activation is also linked with several non-oncological diseases including acute kidney injury (AKI). AKI is a common disorder caused by toxic, inflammatory, and ischemic damage to renal tubular epithelial cells (RTECs). Interestingly, AKI triggered by the anti-cancer drug cisplatin can be mitigated by ribociclib, a CDK4/6 inhibitor, through mechanisms that remain unclear. Employing in vivo cell cycle analysis and functional Rb1 knock-down, here, we have examined the cellular and pharmacological basis of the renal protective effects of ribociclib during cisplatin nephrotoxicity. Remarkably, siRNA-mediated Rb1 silencing or RTEC-specific Rb1 gene ablation did not alter the severity of cisplatin-associated AKI; however, it completely abrogated the protective effects conferred by ribociclib administration. Furthermore, we find that cisplatin treatment evokes CDK4/6 activation and Rb1 phosphorylation in the normally quiescent RTECs, however, this is not followed by S-phase entry likely due to DNA-damage induced G1 arrest. The cytoprotective effects of ribociclib are thus not a result of suppression of S-phase entry but are likely dependent on the maintenance of Rb1 in a hypo-phosphorylated and functionally active form under stress conditions. These findings delineate the role of Rb1 in AKI and illustrate the pharmacological basis of the renal protective effects of CDK4/6 inhibitors.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Aminopiridinas/uso terapêutico , Cisplatino/farmacologia , Substâncias Protetoras/uso terapêutico , Purinas/uso terapêutico , Proteínas de Ligação a Retinoblastoma/metabolismo , Injúria Renal Aguda/metabolismo , Aminopiridinas/farmacologia , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Citoproteção , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Purinas/farmacologia , Proteínas de Ligação a Retinoblastoma/genética , Transdução de Sinais/efeitos dos fármacos
15.
J Immunol ; 204(10): 2661-2670, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32253243

RESUMO

Idiopathic pulmonary fibrosis is a deadly disease characterized by excessive extracellular matrix deposition in the lungs, resulting in decreased pulmonary function. Although epithelial cells and fibroblasts have long been the focus of idiopathic pulmonary fibrosis research, the role of various subpopulations of macrophages in promoting a fibrotic response is an emerging target. Healthy lungs are composed of two macrophage populations, tissue-resident alveolar macrophages and interstitial macrophages, which help to maintain homeostasis. After injury, tissue-resident alveolar macrophages are depleted, and monocytes from the bone marrow (BM) traffic to the lungs along a CCL2/CCR2 axis and differentiate into monocyte-derived alveolar macrophages (Mo-AMs), which is a cell population implicated in murine models of pulmonary fibrosis. In this study, we sought to determine how IL-1R-associated kinase-M (IRAK-M), a negative regulator of TLR signaling, modulates monocyte trafficking into the lungs in response to bleomycin. Our data indicate that after bleomycin challenge, mice lacking IRAK-M have decreased monocyte trafficking and reduced Mo-AMs in their lungs. Although IRAK-M expression did not regulate differences in chemokines, cytokines, or adhesion molecules associated with monocyte recruitment, IRAK-M was necessary for CCR2 upregulation following bleomycin challenge. This finding prompted us to develop a competitive BM chimera model, which demonstrated that expression of BM-derived IRAK-M was necessary for monocyte trafficking into the lung and for subsequent enhanced collagen deposition. These data indicate that IRAK-M regulates monocyte trafficking by increasing the expression of CCR2, resulting in enhanced monocyte translocation into the lung, Mo-AM differentiation, and development of pulmonary fibrosis.


Assuntos
Antibacterianos/uso terapêutico , Bleomicina/uso terapêutico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Monócitos/imunologia , Animais , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Fibrose Pulmonar Idiopática/imunologia , Quinases Associadas a Receptores de Interleucina-1/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/efeitos dos fármacos , Receptores CCR2/metabolismo , Transdução de Sinais , Regulação para Cima
16.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L921-L930, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159972

RESUMO

The incidence of asthma has increased from 5.5% to near 8% of the population, which is a major health concern. The hallmarks of asthma include eosinophilic airway inflammation that is associated with chronic airway remodeling. Allergic airway inflammation is characterized by a complex interplay of resident and inflammatory cells. MicroRNAs (miRNAs) are small noncoding RNAs that function as posttranscriptional modulators of gene expression. However, the role of miRNAs, specifically miR-451, in the regulation of allergic airway inflammation is unexplored. Our previous findings showed that oxidant stress regulates miR-451 gene expression in macrophages during an inflammatory process. In this paper, we examined the role of miR-451 in regulating macrophage phenotype using an experimental poly-allergenic murine model of allergic airway inflammation. We found that miR-451 contributes to the allergic induction of CCL17 in the lung and plays a key role in proasthmatic macrophage activation. Remarkably, administration of a Sirtuin 2 (Sirt2) inhibitor diminished alternate macrophage activation and markedly abrogated triple-allergen [dust mite, ragweed, Aspergillus fumigatus (DRA)]-induced lung inflammation. These data demonstrate a role for miR-451 in modulating allergic inflammation by influencing allergen-mediated macrophages phenotype.


Assuntos
Asma/genética , Macrófagos Alveolares/imunologia , MicroRNAs/genética , Pneumonia/genética , Sirtuína 2/genética , Alérgenos/administração & dosagem , Animais , Anti-Inflamatórios/farmacologia , Antígenos de Plantas/administração & dosagem , Aspergillus/química , Aspergillus/imunologia , Asma/induzido quimicamente , Asma/patologia , Asma/terapia , Quimiocina CCL17/genética , Quimiocina CCL17/imunologia , Modelos Animais de Doenças , Fungos/química , Fungos/imunologia , Furanos/farmacologia , Regulação da Expressão Gênica , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/imunologia , Extratos Vegetais/administração & dosagem , Pneumonia/induzido quimicamente , Pneumonia/patologia , Pneumonia/terapia , Pyroglyphidae/química , Pyroglyphidae/imunologia , Quinolinas/farmacologia , Transdução de Sinais , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/imunologia
17.
Aging Dis ; 10(2): 367-382, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31011483

RESUMO

Age-associated chronic inflammation is characterized by unresolved and uncontrolled inflammation with multivariable low-grade, chronic and systemic responses that exacerbate the aging process and age-related chronic diseases. Currently, there are two major hypotheses related to the involvement of chronic inflammation in the aging process: molecular inflammation of aging and inflammaging. However, neither of these hypotheses satisfactorily addresses age-related chronic inflammation, considering the recent advances that have been made in inflammation research. A more comprehensive view of age-related inflammation, that has a scope beyond the conventional view, is therefore required. In this review, we discuss newly emerging data on multi-phase inflammatory networks and proinflammatory pathways as they relate to aging. We describe the age-related upregulation of nuclear factor (NF)-κB signaling, cytokines/chemokines, endoplasmic reticulum (ER) stress, inflammasome, and lipid accumulation. The later sections of this review present our expanded view of age-related senescent inflammation, a process we term "senoinflammation", that we propose here as a novel concept. As described in the discussion, senoinflammation provides a schema highlighting the important and ever-increasing roles of proinflammatory senescence-associated secretome, inflammasome, ER stress, TLRs, and microRNAs, which support the senoinflammation concept. It is hoped that this new concept of senoinflammation opens wider and deeper avenues for basic inflammation research and provides new insights into the anti-inflammatory therapeutic strategies targeting the multiple proinflammatory pathways and mediators and mediators that underlie the pathophysiological aging process.

18.
JCI Insight ; 4(4)2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30668546

RESUMO

Allergic eosinophilic asthma is a chronic condition causing airway remodeling resulting in lung dysfunction. We observed that expression of sirtuin 2 (Sirt2), a histone deacetylase, regulates the recruitment of eosinophils after sensitization and challenge with a triple antigen: dust mite, ragweed, and Aspergillus fumigatus (DRA). Our data demonstrate that IL-4 regulates the expression of Sirt2 isoform 3/5. Pharmacological inhibition of Sirt2 by AGK2 resulted in diminished cellular recruitment, decreased CCL17/TARC, and reduced goblet cell hyperplasia. YM1 and Fizz1 expression was reduced in AGK2-treated, IL-4-stimulated lung macrophages in vitro as well as in lung macrophages from AGK2-DRA-challenged mice. Conversely, overexpression of Sirt2 resulted in increased cellular recruitment, CCL17 production, and goblet cell hyperplasia following DRA challenge. Sirt2 isoform 3/5 was upregulated in primary human alveolar macrophages following IL-4 and AGK2 treatment, which resulted in reduced CCL17 and markers of alternative activation. These gain-of-function and loss-of-function studies indicate that Sirt2 could be developed as a treatment for eosinophilic asthma.


Assuntos
Asma/imunologia , Eosinófilos/imunologia , Interleucina-4/imunologia , Sirtuína 2/imunologia , Transferência Adotiva , Alérgenos/administração & dosagem , Alérgenos/imunologia , Animais , Asma/diagnóstico , Asma/patologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Células Cultivadas , Quimiocina CCL17/imunologia , Quimiocina CCL17/metabolismo , Modelos Animais de Doenças , Feminino , Furanos/farmacologia , Células Caliciformes/imunologia , Células Caliciformes/patologia , Humanos , Interleucina-4/metabolismo , Pulmão/citologia , Pulmão/imunologia , Pulmão/patologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/transplante , Masculino , Camundongos , Camundongos Knockout , Cultura Primária de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Quinolinas/farmacologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/genética , Sirtuína 2/metabolismo
19.
Allergy ; 74(3): 535-548, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30288751

RESUMO

BACKGROUND: The pathogenesis of asthma and airway obstruction is the result of an abnormal response to different environmental exposures. The scientific premise of our study was based on the finding that FoxO1 expression is increased in lung macrophages of mice after allergen exposure and human asthmatic patients. Macrophages are capable of switching from one functional phenotype to another, and it is important to understand the mechanisms involved in the transformation of macrophages and how their cellular function affects the peribronchial stromal microenvironment. METHODS: We employed a murine asthma model, in which mice were treated by intranasal insufflation with allergens for 2-8 weeks. We used both a pharmacologic approach using a highly specific FoxO1 inhibitor and genetic approaches using FoxO1 knockout mice (FoxO1fl/fl LysMcre). Cytokine level in biological fluids was measured by ELISA and the expression of encoding molecules by NanoString assay and qRT-PCR. RESULTS: We show that the levels of FoxO1 gene are significantly elevated in the airway macrophages of patients with mild asthma in response to subsegmental bronchial allergen challenge. Transcription factor FoxO1 regulates a pro-asthmatic phenotype of lung macrophages that is involved in the development and progression of chronic allergic airway disease. We have shown that inhibition of FoxO1 induced phenotypic conversion of lung macrophages and downregulates pro-asthmatic and pro-fibrotic gene expression by macrophages, which contribute to airway inflammation and airway remodeling in allergic asthma. CONCLUSION: Targeting FoxO1 with its downstream regulator IRF4 is a novel therapeutic target for controlling allergic inflammation and potentially reversing fibrotic airway remodeling.


Assuntos
Asma/etiologia , Asma/metabolismo , Proteína Forkhead Box O1/genética , Regulação Neoplásica da Expressão Gênica , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Transferência Adotiva , Alérgenos/imunologia , Animais , Asma/diagnóstico , Asma/terapia , Testes de Provocação Brônquica , Broncoscopia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Proteína Forkhead Box O1/metabolismo , Humanos , Camundongos , Células Th2/imunologia , Células Th2/metabolismo
20.
Immunity ; 49(2): 275-287.e5, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30054206

RESUMO

Airway epithelial cells (AECs) secrete innate immune cytokines that regulate adaptive immune effector cells. In allergen-sensitized humans and mice, the airway and alveolar microenvironment is enriched with colony stimulating factor-1 (CSF1) in response to allergen exposure. In this study we found that AEC-derived CSF1 had a critical role in the production of allergen reactive-IgE production. Furthermore, spatiotemporally secreted CSF1 regulated the recruitment of alveolar dendritic cells (DCs) and enhanced the migration of conventional DC2s (cDC2s) to the draining lymph node in an interferon regulatory factor 4 (IRF4)-dependent manner. CSF1 selectively upregulated the expression of the chemokine receptor CCR7 on the CSF1R+ cDC2, but not the cDC1, population in response to allergen stimuli. Our data describe the functional specification of CSF1-dependent DC subsets that link the innate and adaptive immune responses in T helper 2 (Th2) cell-mediated allergic lung inflammation.


Assuntos
Alérgenos/imunologia , Células Dendríticas/imunologia , Fator Estimulador de Colônias de Macrófagos/imunologia , Receptores CCR7/biossíntese , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Animais , Linhagem Celular , Movimento Celular/imunologia , Células Dendríticas/classificação , Células Epiteliais/citologia , Células Epiteliais/imunologia , Humanos , Imunidade Inata/imunologia , Imunoglobulina E/imunologia , Fatores Reguladores de Interferon/imunologia , Linfonodos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células RAW 264.7 , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Células Th2/imunologia , Regulação para Cima/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA