Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 26146, 2024 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-39478137

RESUMO

Despite the intensive research on gut microbiome-associated diseases over the past 20 years, pharmacological methods for effectively eliminating pathobionts remain unsatisfactory. This study investigated the therapeutic potential of bacteriophages against Enterococcus faecalis, in which bacterial tyrosine decarboxylase (TDC) converts orally administered levodopa (L-DOPA) to dopamine, in an MPTP mouse model of Parkinson's disease (PD). E. faecalis bacteriophages PBEF62, PBEF66, and PBEF67 (4 × 1010 PFU total/200 µl/day), and E. faecalis cells (2 × 109 CFU/200 µl/day) were orally administered at 2-h intervals before every MPTP (i.p.) and/or L-DOPA (p.o.) treatments for 13 days. The relative abundances of E. faecalis cells and bacteriophages in the feces peaked at 4 and 12 h after administration and gradually decreased by 12 and 48 h, respectively. While the administration of E. faecalis cells eliminated the beneficial effect of L-DOPA on MPTP-induced behavioral deficits, as assessed by cylinder and rotarod tests, the co-administration of bacteriophages with bacterial cells restored this effect. The modulating effects of L-DOPA, E. faecalis, and bacteriophages on PD behavior were closely associated with choline acetyltransferase expression levels in the striatum but not with tyrosine hydroxylase in the substantia nigra of each group. Recurrence and extinction of PD behaviors following treatment with E. faecalis and/or bacteriophages were also coincident with the dopamine levels in the blood and brain tissues of PD mice. The effectiveness of L-DOPA was restored after the three types of E. faecalis bacteriophages selectively eliminated E. faecalis cells, along with the TDC gene copies and transcripts responsible for converting L-DOPA to dopamine in the gastrointestinal tract. In conclusion, a combination of bacteriophages PBEF62, PBEF66, and PBEF67 targeting E. faecalis demonstrates potential as a valuable supplement to L-DOPA therapy for PD.


Assuntos
Bacteriófagos , Modelos Animais de Doenças , Enterococcus faecalis , Microbioma Gastrointestinal , Levodopa , Animais , Enterococcus faecalis/efeitos dos fármacos , Bacteriófagos/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Masculino , Doença de Parkinson/terapia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/microbiologia , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Terapia por Fagos/métodos
2.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895965

RESUMO

Although Parkinson's disease (PD) is a representative neurodegenerative disorder and shows characteristic motor impediments, the pathophysiological mechanisms and treatment targets for PD have not yet been clearly identified. Since several tryptophan metabolites produced by gut microbiota could pass the blood-brain barrier and, furthermore, might influence the central nervous system, tryptophan metabolites within the indole, kynurenine, and serotonin metabolic pathways might be the most potent targets for PD development. Furthermore, most metabolites are circulated via the blood, play roles in and/or are metabolized via the host organs, and finally are excreted into the urine. Therefore, profiling the overall tryptophan metabolic pathways in urine samples of patients with PD is important to understanding the pathological mechanisms, finding biomarkers, and discovering therapeutic targets for PD. However, the development of profiling analysis based on tryptophan metabolism pathways in human urine samples is still challenging due to the wide physiological ranges, the varied signal response, and the structural diversity of tryptophan metabolites in complicated urine matrices. In this study, an LC-MS/MS method was developed to profile 21 tryptophan metabolites within the indole, kynurenine, and serotonin metabolic pathways in human urine samples using ion-pairing chromatography and multiple reaction monitoring determination. The developed method was successfully applied to urine samples of PD patients (n = 41) and controls (n = 20). Further, we investigated aberrant metabolites to find biomarkers for PD development and therapeutic targets based on the quantitative results. Unfortunately, most tryptophan metabolites in the urine samples did not present significant differences between control and PD patients, except for indole-3-acetic acid. Nonetheless, indole-3-acetic acid was reported for the first time for its aberrant urinary levels in PD patients and tentatively selected as a potential biomarker for PD. This study provides accurate quantitative results for 21 tryptophan metabolites in biological samples and will be helpful in revealing the pathological mechanisms of PD development, discovering biomarkers for PD, and further providing therapeutic targets for various PD symptoms. In the near future, to further investigate the relationship between gut microbial metabolites and PD, we will employ studies on microbial metabolites using plasma and stool samples from control and PD patients.

3.
Life Sci ; 309: 121010, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36181864

RESUMO

AIMS: Short-chain fatty acids (SCFAs) are produced by gut microbiota from dietary fiber. Since absorbed SCFAs could be introduced into the tricarboxylic acid (TCA) cycle in host cells, the relationships between SCFAs and TCA cycle intermediates might influence to energy metabolism in the human body. For this reason, information on profile changes between SCFAs and TCA cycle intermediates could help unveil pathological mechanisms of gastric cancer. MAIN METHODS: A gas chromatography-tandem mass spectrometry (GC-MS/MS) method was developed to simultaneously determine SCFAs and TCA cycle intermediates in human plasma from patients with chronic superficial gastritis (CSG), intestinal metaplasia (IM), and gastric cancer. We applied a tetra-alkyl ammonium pairing method to prevent loss of volatile SCFAs and base decarboxylation of TCA cycle intermediates during sample preparation. To assess gastric diseases, metabolic alterations of SCFAs and TCA cycle intermediates in human plasma with gastric disorders were analyzed by their plasma levels. KEY FINDINGS: Significantly different metabolic alterations based on the plasma levels of SCFAs and TCA cycle intermediates were investigated in cancer metabolic pathways. Not only propionate and butyrate, mainly produced by gut microbiota, were significantly decreased, but also cis-aconitate, α-ketoglutarate, and fumarate were significantly increased in plasma with IM or gastric cancer, compared to CSG. Further, based on ratios of product to precursor, three metabolic pathways (succinate/propionate, succinate/α-ketoglutarate, and cis-aconitate/citrate) were supposed to be distorted between gastric diseases. SIGNIFICANCE: In conclusion, propionate, cis-aconitate, α-ketoglutarate, and fumarate could be used to assess the progression of gastric cancer.


Assuntos
Compostos de Amônio , Gastrite Atrófica , Lesões Pré-Cancerosas , Neoplasias Gástricas , Humanos , Espectrometria de Massas em Tandem , Propionatos , Ácidos Cetoglutáricos , Ácido Aconítico , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ácidos Graxos Voláteis , Fibras na Dieta , Ácido Succínico , Butiratos , Fumaratos , Citratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA