Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e29018, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601691

RESUMO

Biodiesel production processes, such as gravity settling, have limitations in terms of biodiesel yield, purification efficiency, operating time in the separation process, and more extensive equipment. Therefore, this study has focused on using a recently developed centrifuge machine for biodiesel separation to address these challenges due to its compact design, high efficiency, and simplicity. Additionally, this study aimed to optimize the separation efficiency of glycerol from biodiesel using a centrifuge machine, employing response surface methodology (RSM) with central composite design (CCD). The optimum conditions for separating glycerol from biodiesel via centrifuge machine are a rotation speed of 1800 rpm, a mixture flow rate of 192.25 ml/min, and a temperature of 55 °C, respectively. In optimum conditions, 94.52% separation efficiency was achieved. Biodiesel production can be improved, leading to higher yields and greater purity. The utilization of RSM proved valuable in determining the optimum conditions for separation. Furthermore, the machine successfully separated the biodiesel to meet ASTM D6751 and EN 14,214 standards. The results highlight the potential of the centrifuge machine for efficient and reliable biodiesel production, contributing to the advancement of the biodiesel industry.

2.
J Mech Behav Biomed Mater ; 151: 106339, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184930

RESUMO

Polycaprolactone (PCL) and carboxymethyl cellulose (CMC) are two materials with beneficial properties for wound healing applications. Here, the simple preparation of PCL/CMC polymer films via the crosslinking method was demonstrated for the first time. The polymer films represented the suitable properties of liquid absorption and tensile strength to be used as a wound dressing. The blend polymer films can also load the vancomycin, which prolongs the drug release for effectiveness against S. aureus. The trifluoroethanol showed less toxicity in comparison with other crosslinking agents. This process can also be applied further in other medical devices and wound healing applications.


Assuntos
Carboximetilcelulose Sódica , Poliésteres , Vancomicina , Vancomicina/farmacologia , Polímeros , Staphylococcus aureus , Antibacterianos/farmacologia , Bandagens
3.
Environ Sci Pollut Res Int ; 30(60): 125889-125906, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010541

RESUMO

Production of coffee beans generates various types of biomass that can be applied as bioenergy for drying and roasting the beans. Thus, the aims of this study were to explore the characteristics of coffee biomass pellets (CBPs) produced from coffee cherry pulp (CCP), coffee parchment (CPM), and expired green coffee beans (ECB) by single and co-pelletization. The CBPs were then used to produce the synthesis gas in a downdraft gasifier, and the syngas properties were investigated for further heat applications. The results showed that single and co-pelletization of CCP and CPM performed well. The CBPs had good physiochemical properties in shape, size, and atomic ratios. The higher heating value and energy density of CBPs were 19.25-24.29 MJ/kg and 12.09-14.87 GJ/m3. The ash from CBPs was rich in K2O, CaO and MgO oxides, and the CPM ash had the lowest initial deformation temperature at 1136 °C. The ash samples from CBPs also had different slagging and fouling indexes. The syngas from CBPs mainly contained H2 (6.85-9.30%), CO (12.15-18.85%), and CO2 (10.85-13.75%). The heating value and tar concentration of syngas from CBPs were 3.24-4.32 MJ/m3 and 21.75-30.92 g/m3. The main chemical compounds in tar were styrene, phenol, caffeine, and pyrrole according to GC-MS. These results indicate that CCP and CPM have potential for pelletization and gasification to generate heat needed for coffee bean processing.


Assuntos
Temperatura Alta , Óxidos , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA