Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Antioxidants (Basel) ; 12(7)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37507866

RESUMO

The aim of this study is to investigate the therapeutic potential of higher doses of PU-91, quercetin, or in combination on transmitochondrial cybrid cell lines with various mtDNA haplogroups derived from patients with age-related macular degeneration (AMD), glaucoma (Glc), keratoconus (KC), and normal (NL) individuals. Cybrids were treated with PU-91 (P) (200 µM) alone, quercetin (Q) (20 µM) alone, or a combination of PU-91 and quercetin (P+Q) for 48 h. Cellular metabolism and the intracellular levels of reactive oxygen species (ROS) were measured by MTT and H2DCFDA assays, respectively. Quantitative real-time PCR was performed to measure the expression levels of genes associated with mitochondrial biogenesis, antioxidant enzymes, inflammation, apoptosis, and senescence pathways. PU-91(P) (i) improves cellular metabolism in AMD cybrids, (ii) decreases ROS production in AMD cybrids, and (iii) downregulates the expression of LMNB1 in AMD cybrids. Combination treatment of PU-91 plus quercetin (P+Q) (i) improves cellular metabolism in AMD, (ii) induces higher expression levels of TFAM, SOD2, IL6, and BAX in AMD cybrids, and (iii) upregulates CDKN1A genes expression in all disease cybrids. Our study demonstrated that the P+Q combination improves cellular metabolism and mitochondrial biogenesis in AMD cybrids, but senescence is greatly exacerbated in all cybrids regardless of disease type by the P+Q combined treatment.

2.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446202

RESUMO

This study uses personalized chronic lymphoblastic leukemia (CLL) cybrid cells to test various drugs/agents designed to improve mitochondrial function and cell longevity. Age-matched control (NL) and CLL cybrids were created. The NL and CLL cybrids were treated with ibrutinib (Ibr-10 µM), mitochondrial-targeted nutraceuticals such as alpha lipoic acid (ALA-1 mM), amla (Aml-300 µg), melatonin (Mel-1 mM), resveratrol (Res-100 µM) alone, or a combination of ibrutinib with nutraceuticals (Ibr + ALA, Ibr + Aml, Ibr + Mel, or Ibr + Res) for 48 h. MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide), H2DCFDA(2',7' Dichlorodihydrofluorescein diacetate), and JC1 assays were used to measure the cellular metabolism, intracellular ROS levels, and mitochondrial membrane potential (∆ψm), respectively. The expression levels of genes associated with antioxidant enzymes (SOD2, GPX3, and NOX4), apoptosis (BAX and CASP3), and inflammation (IL6, IL-1ß, TNFα, and TGFß) were measured using quantitative real-time PCR (qRT-PCR). CLL cybrids treated with Ibr + ALA, Ibr + Aml, Ibr + Mel, and Ibr + Res had (a) reduced cell survivability, (b) increased ROS production, (c) increased ∆ψm levels, (d) decreased antioxidant gene expression levels, and (e) increased apoptotic and inflammatory genes in CLL cybrids when compared with ibrutinib-alone-treated CLL cybrids. Our findings show that the addition of nutraceuticals makes the CLL cybrids more pro-apoptotic with decreased cell survival compared with CLL cybrids exposed to ibrutinib alone.


Assuntos
Leucemia Linfocítica Crônica de Células B , Leucemia Mieloide Aguda , Mitocôndrias , Humanos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células Híbridas , Suplementos Nutricionais , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos
3.
Int J Retina Vitreous ; 9(1): 44, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491310

RESUMO

PURPOSE: The present study tests the hypothesis that mitochondrial genes have retrograde signaling capacity that influences the expression of nuclear genes related to angiogenesis pathways. Cytoplasmic hybrid (cybrid) in vitro cell lines with patient specific mitochondria inserted into an immortalized retinal pigment epithelial cell line (ARPE-19) were used to test this hypothesis. This type of analysis can provide important information to identify the optimal regimen of anti-VEGF treatment, personalizing age-related macular degeneration (AMD) therapies. METHODS: Mitochondria deficient ARPE-19 cells (Rho0) were fused with AMD donor's platelets to create individual cybrid cell lines containing mitochondria from patients with phenotypic AMD disease and nuclear DNA from the immortalized RPE cell line. The cybrids were treated with Ranibizumab (Lucentis, Genentech, San Francisco, CA), at 4 different concentrations for 24 h, and subsequently the levels of reactive oxygen species (ROS), gene expression for VEGF-A, hypoxia-inducible factor 1-alpha (HIF1-a) and manganese superoxide dismutase (SOD2) were measured. The clinical evolution of the two AMD-donors were correlated with the molecular findings found in their 'personalized' cybrids. RESULTS: Cybrids from Patient-01 showed down-regulation of gene expression of VEGF-A and HIF-1a at both 1X and 4X Ranibizumab concentrations. Patient-01 AMD cybrid cultures had an increase in the ROS levels at 1X (P = 0.0317), no changes at 2X (P = 0.8350) and a decrease at 4X (P = 0.0015) and 10X (P = 0.0011) of Ranibizumab. Clinically, Patient-01 responded to anti-VEGF therapy but eventually developed geographic atrophy. Patient-02 cybrids demonstrated up-regulation of gene expression of VEGF-A and HIF-1a at Ranibizumab 1X and 4X concentrations. There was decreased ROS levels with Ranibizumab 1X (P = 0.1606), 2X (P = 0.0388), 4X (P = 0.0010) and 10X (P = < 0.0001). Clinically, Patient-02 presented with a neovascular lesion associated with a prominent production of intraretinal fluid in clinical follow-up requiring regular and repeated intravitreal injections of Ranibizumab with recurrent subretinal fluid. CONCLUSIONS: Our cybrid model has the potential to help personalize the treatment regimen with anti-VEGF drugs in patients with neovascular AMD. Further investigation is needed to better understand the role that the mitochondria play in the cellular response to anti-VEGF drugs. Future studies that focus on this model have the potential to help personalize anti-VEGF treatment.

4.
Sci Rep ; 13(1): 3818, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882486

RESUMO

Diabetic retinopathy (DR) is the most common diabetic microvascular complication and cause of blindness in adults under the age of 65. Our results suggest that, when comparing transcriptomes of cultures grown in hypoxic conditions versus room-air, cybrids containing mitochondria from African and Asian diabetic subjects ([Afr + Asi]/DM) have some uniquely different transcriptome profiles compared to European/diabetic (Euro/DM) cybrids (e.g., fatty acid metabolism: EnrichR rank 10 in [Afr + Asi]/DM, rank 85 in Euro/DM; Endocytosis: rank 25 in [Afr + Asi]/DM, rank 5 in Euro/DM; Ubiquitin Mediated Proteolysis: rank 34 in [Afr + Asi]/DM, rank 7 in Euro/DM). As determined by both RNA-seq and qRT-PCR results, transcription of the gene encoding oleoyl-ACP hydrolase (OLAH) was significantly increased in [Afr + Asi]/DM cybrids compared to Euro/DM cybrids in hypoxic conditions. Additionally, our results show that in hypoxic conditions, Euro/DM cybrids and [Afr + Asi]/DM cybrids show similar decreases in ROS production. All cybrids showed decreased ZO1-minus protein levels, but their phagocytic functions were not significantly altered in hypoxic conditions. In conclusion, our findings suggest that the "molecular memory" imparted by [Afr + Asi]/DM mtDNA may act through one of the molecular pathways seen in transcriptome analysis, such as fatty acid metabolism, without significantly changing essential RPE functions.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Adulto , Humanos , Retinopatia Diabética/genética , Asiático , População Negra , Hipóxia/genética , Ácidos Graxos , Diabetes Mellitus/genética
5.
FASEB Bioadv ; 4(10): 675-689, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36238361

RESUMO

Activation of the Simulator of Interferon Genes (STING) system by mitochondrial (mt) DNA can upregulate type 1 interferon genes and enhance immune responses to combat bacterial and viral infections. In cancers, the tumor-derived DNA activates STING leading to upregulation of IFN-beta and induction of antitumor T cells. The entire mtDNA from the cell lines was sequenced using next-generation sequencing (NGS) technology with independent sequencing of both strands in both directions, allowing identification of low-frequency heteroplasmy SNPs. There were 15 heteroplasmy SNPs showing a range from 3.4% to 40.5% occurrence in the K cybrid cell lines. Three H haplogroup cybrids possessed SNP heteroplasmy that ranged from 4.39% to 30.7%. The present study used qRT-PCR to determine if cybrids of H and K haplogroups differentially regulate expression levels of five cancer genes (BRAC1, ALK, PD1, EGFR, and HER2) and seven STING subunits genes (CGAS, TBK1, IRF3, IκBa, NFκB, TRAF2, and TNFRSF19). Some cybrids underwent siRNA knockdown of STING followed by qRT-PCR in order to determine the impact of STING on gene expression. Rho0 (lacking mtDNA) ARPE-19 cells were used to determine if mtDNA is required for the expression of the cancer genes studied. Our results showed that (a) K cybrids have lower expression levels for BRAC1, ALK, PD1, EGFR, IRF3, and TNFRSF19 genes but increased transcription for IκBa and NFκB compared to H cybrids; (b) STING KD decreases expression of EGFR in both H and K cybrids, and (c) PD1 expression is negligible in Rho0 cells. Our findings suggest that the STING DNA sensing pathway may be a previously unrecognized pathway to target modulation of cancer-related genes and the PD1 expression requires the presence of mtDNA.

6.
Cells ; 11(17)2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36078063

RESUMO

Mitochondrial (mt) DNA can be classified into haplogroups, which represent populations with different geographic origins. Individuals of maternal African backgrounds (L haplogroup) are more prone to develop specific diseases compared those with maternal European-H haplogroups. Using a cybrid model, effects of amyloid-ß (Amyß), sub-lethal ultraviolet (UV) radiation, and 5-Aza-2'-deoxycytidine (5-aza-dC), a methylation inhibitor, were investigated. Amyß treatment decreased cell metabolism and increased levels of reactive oxygen species in European-H and African-L cybrids, but lower mitochondrial membrane potential (ΔΨM) was found only in African-L cybrids. Sub-lethal UV radiation induced higher expression levels of CFH, EFEMP1, BBC3, and BCL2L13 in European-H cybrids compared to African-L cybrids. With respect to epigenetic status, the African-L cybrids had (a) 4.7-fold higher total global methylation levels (p = 0.005); (b) lower expression patterns for DNMT3B; and (c) elevated levels for HIST1H3F. The European-H and African-L cybrids showed different transcription levels for CFH, EFEMP1, CXCL1, CXCL8, USP25, and VEGF after treatment with 5-aza-dC. In conclusion, compared to European-H haplogroup cybrids, the African-L cybrids have different (i) responses to exogenous stressors (Amyß and UV radiation), (ii) epigenetic status, and (iii) modulation profiles of methylation-mediated downstream complement, inflammation, and angiogenesis genes, commonly associated with various human diseases.


Assuntos
DNA Mitocondrial , Polimorfismo de Nucleotídeo Único , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Suscetibilidade a Doenças/metabolismo , Epigênese Genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Ubiquitina Tiolesterase/metabolismo
7.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743133

RESUMO

The aim of this study was to determine the role of retrograde signaling (mitochondria to nucleus) in MCF7 breast cancer cells. Therefore, in the present study, MCF7-H and MCF7-J cybrids were produced using the mitochondria from the same H and J individuals that were already used in our non-diseased retinal pigment epithelium (ARPE19) cybrids. MCF7 cybrids were treated with cisplatin and analyzed for cell viability, mitochondrial membrane potential, ROS, and expression levels of genes associated with the cGAS-STING and cancer-related pathways. Results showed that unlike the ARPE19-H and ARPE19-J cybrids, the untreated MCF7-H and MCF7-J cybrids had similar levels of ATP, lactate, and OCR: ECAR ratios. After cisplatin treatment, MCF7-H and MCF7-J cybrids showed similar (a) decreases in cell viability and ROS levels; (b) upregulation of ABCC1, BRCA1 and CDKN1A/P21; and (c) downregulation of EGFR. Cisplatin-treated ARPE19-H and ARPE19-J cybrids showed increased expression of six cGAS-STING pathway genes, while two were increased for MCF7-J cybrids. In summary, the ARPE19-H and ARPE19-J cybrids behave differentially from each other with or without cisplatin. In contrast, the MCF7-H and MCF7-J cybrids had identical metabolic/bioenergetic profiles and cisplatin responses. Our findings suggest that cancer cell nuclei might have a diminished ability to respond to the modulating signaling of the mtDNA that occurs via the cGAS-STING pathway.


Assuntos
Neoplasias da Mama , DNA Mitocondrial , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Cisplatino/metabolismo , Cisplatino/farmacologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Nucleotidiltransferases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
J Ocul Pharmacol Ther ; 38(7): 513-526, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35731128

RESUMO

Purpose: Oxidative stress contributes to the pathogenesis of vision-impairing diseases. In the retina, retinal pigment epithelium (RPE) and Müller cells support neuronal homeostasis, but also contribute to pathological development under stressed conditions. Recent studies found that the investigational drug risuteganib (RSG) has a good safety profile, provided protection in experimental models, and improved visual acuity in patients. The present in vitro study evaluated the effects of RSG in RPE and Müller cell lines stressed with the oxidant hydrogen peroxide (H2O2). Methods: Human RPE (ARPE-19) and Müller (MIO-M1) cell lines were treated with various combinations of RSG and H2O2. Trypan blue assay was used to investigate the effect of compounds on cell viability. Gene expression was measured using RNA sequencing to identify regulated genes and the biological processes and pathways involved. Results: Trypan blue assay found RSG pre-treatment significantly protected against H2O2-induced cell death in ARPE-19 and MIO-M1 cells. Transcriptome analysis found H2O2 regulated genes in several disease-relevant biological processes, including cell adhesion, migration, death, and proliferation; ECM organization; angiogenesis; metabolism; and immune system processes. RSG pre-treatment modulated these gene expression profiles in the opposite direction of H2O2. Pathway analysis found genes in integrin, AP-1, and syndecan signaling pathways were regulated. Expression of selected RSG-regulated genes was validated using qRT-PCR. Conclusions: RSG protected cultured human RPE and Müller cell lines against H2O2-induced cell death and mitigated the associated transcriptome changes in biological processes and pathways relevant to the pathogenesis of retinal diseases. These results demonstrate RSG reduced oxidative stress-induced toxicity in two retinal cell lines with potential relevance to the treatment of human diseases.


Assuntos
Peróxido de Hidrogênio , Epitélio Pigmentado da Retina , Apoptose , Linhagem Celular , Sobrevivência Celular , Células Ependimogliais , Humanos , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo , Peptídeos , Transcriptoma , Azul Tripano/metabolismo , Azul Tripano/farmacologia
9.
Biomolecules ; 12(5)2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35625603

RESUMO

We assessed the potential negative effects of bacteriostatic and bactericidal antibiotics on the AMD cybrid cell lines (K, U and J haplogroups). AMD cybrid cells were created and cultured in 96-well plates and treated with tetracycline (TETRA) and ciprofloxacin (CPFX) for 24 h. Reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔψM), cellular metabolism and ratio of apoptotic cells were measured using H2DCFDA, JC1, MTT and flow cytometry assays, respectively. Expression of genes of antioxidant enzymes, and pro-inflammatory and pro-apoptotic pathways were evaluated by quantitative real-time PCR (qRT-PCR). Higher ROS levels were found in U haplogroup cybrids when treated with CPFX 60 µg/mL concentrations, lower ΔψM of all haplogroups by CPFX 120 µg/mL, diminished cellular metabolism in all cybrids with CPFX 120 µg/mL, and higher ratio of dead cells in K and J cybrids. CPFX 120 µg/mL induced overexpression of IL-33, CASP-3 and CASP-9 in all cybrids, upregulation of TGF-ß1 and SOD2 in U and J cybrids, respectively, along with decreased expression of IL-6 in J cybrids. TETRA 120 µg/mL induced decreased ROS levels in U and J cybrids, increased cellular metabolism of treated U cybrids, higher ratio of dead cells in K and J cybrids and declined ΔψM via all TETRA concentrations in all haplogroups. TETRA 120 µg/mL caused upregulation of IL-6 and CASP-3 genes in all cybrids, higher CASP-7 gene expression in K and U cybrids and downregulation of the SOD3 gene in K and U cybrids. Clinically relevant dosages of ciprofloxacin and tetracycline have potential adverse impacts on AMD cybrids possessing K, J and U mtDNA haplogroups in vitro.


Assuntos
Antibacterianos , Degeneração Macular , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Linhagem Celular , Ciprofloxacina/farmacologia , Humanos , Interleucina-6/metabolismo , Degeneração Macular/tratamento farmacológico , Degeneração Macular/genética , Degeneração Macular/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tetraciclinas
10.
Exp Eye Res ; 214: 108857, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856207

RESUMO

Our goal was to explore the detrimental impacts of ciprofloxacin (CPFX) and tetracycline (TETRA) on human retinal Müller (MIO-M1) cells in vitro. Cells were exposed to 30, 60 and 120 µg/ml of CPFX and TETRA. The cellular metabolism was measured with the MTT assay. The JC-1 and CM-H2DCFDA assays were used to evaluate the levels of mitochondrial membrane potential (MMP) and ROS (reactive oxygen species), respectively. Mitochondrial DNA (mtDNA) copy number, along with gene expression levels associated with apoptotic (BAX, BCL2-L13, BCL2, CASP-3 and CASP-9), inflammatory (IL-6, IL-1ß, TGF-α, TGF-ß1 and TGF-ß2) and antioxidant pathways (SOD2, SOD3, GPX3 and NOX4) were analyzed via Quantitative Real-Time PCR (qRT-PCR). Bioenergetic profiles were measured using the Seahorse® XF Flux Analyzer. Cells exposed 24 h to 120 µg/ml TETRA demonstrated higher cellular metabolism compared to vehicle-treated cells. At each time points, (i) all TETRA concentrations reduced MMP levels and (ii) ROS levels were reduced by TETRA 120 µg/ml treatment. TETRA caused (i) higher expression of CASP-3, CASP-9, TGF-α, IL-1B, GPX3 and SOD3 but (ii) decreased levels of TGF-B2 and SOD2. ATP production and spare respiratory capacity declined with TETRA treatment. Cellular metabolism was reduced with CPFX 120 µg/ml in all cultures and 60 µg/ml after 72 h. The CPFX 120 µg/ml reduced MMP in all cultures and ROS levels (72 h). CPFX treatment (i) increased expression of CASP-3, CASP-9, and BCL2-L13, (ii) elevated the basal oxygen consumption rate, and (iii) lowered the mtDNA copy numbers and expression levels of TGF-B2, IL-6 and IL-1B compared to vehicle-control cells. We conclude that clinically relevant dosages of bactericidal and bacteriostatic antibiotics can have negative effects on the cellular metabolism and mitochondrial membrane potential of the retinal MIO-M1 cells in vitro. It is noteworthy to mention that apoptotic and inflammatory pathways in exposed cells were affected significantly This is the first study showing the negative impact of fluoroquinolones and tetracyclines on mitochondrial behavior of human retinal MIO-M1 cells.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Células Ependimogliais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Tetraciclina/farmacologia , Proteínas Reguladoras de Apoptose/genética , Sobrevivência Celular , Células Cultivadas , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Células Ependimogliais/metabolismo , Humanos , Interleucinas/genética , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Oxirredutases/genética , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
11.
Mitochondrion ; 60: 189-200, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34400356

RESUMO

Mitochondrial DNA (mtDNA) dysfunction and variation in mtDNA haplogroups play a key role in the etiology of Age-related Macular Degeneration (AMD). This study examined the response(s) of AMD ARPE-19 transmitochondrial cybrids having U, K, and J mtDNA haplogroups to treatment with a mitochondria-targeting PU-91 drug. PU-91 exerts its cytoprotective effects by upregulating PGC-1α (Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha) which is a primary regulator of the mitochondrial biogenesis pathway. The effects of PU-91 drug were determined using cell-based assays and gene expression analyses. Our study revealed that AMD cybrids with different mtDNA haplogroups i.e., U, K, J haplogroups respond differentially to PU-91 drug treatment; and that the PU-91 drug increases viable cell number, improves mitochondrial health, and protects AMD cybrids against oxidative stress across the board irrespective of their haplogroup variation. This study suggests that mtDNA haplogroups may contribute to the differential responses of AMD cybrid cells to PU-91 drug in vitro and may also influence AMD patients' responses to drug treatment.


Assuntos
DNA Mitocondrial , Mitocôndrias , Humanos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA Mitocondrial/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Haplótipos , Degeneração Macular , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio
12.
Stem Cells Int ; 2021: 6655372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628267

RESUMO

PURPOSE: One of the leading causes of irreversible blindness worldwide, age-related macular degeneration (AMD) is a progressive disorder leading to retinal degeneration. While several treatment options exist for the exudative form of AMD, there are currently no FDA-approved treatments for the more common nonexudative (atrophic) form. Mounting evidence suggests that mitochondrial damage and retinal pigment epithelium (RPE) cell death are linked to the pathogenesis of AMD. Human retinal progenitor cells (hRPCs) have been studied as a potential restorative therapy for degenerative conditions of the retina; however, the effects of hRPC treatment on retinal cell survival in AMD have not been elucidated. METHODS: In this study, we used a cell coculture system consisting of hRPCs and AMD or age-matched normal cybrid cells to characterize the effects of hRPCs in protecting AMD cybrids from cellular and mitochondrial damage and death. RESULTS: AMD cybrids cocultured with hRPCs showed (1) increased cell viability; (2) decreased gene expression related to apoptosis, autophagy, endoplasmic reticulum (ER) stress, and antioxidant pathways; and (3) downregulation of mitochondrial replication genes compared to AMD cybrids without hRPC treatment. Furthermore, hRPCs cocultured with AMD cybrids showed upregulation of (1) neuronal and glial markers, as well as (2) putative neuroprotective factors, responses not found when hRPCs were cocultured with age-matched normal cybrids. CONCLUSION: The current study provides the first evidence that therapeutic benefits may be obtainable using a progenitor cell-based approach for atrophic AMD. Our results suggest that bidirectional interactions exist between hRPCs and AMD cybrids such that hRPCs release trophic factors that protect the cybrids against the cellular and mitochondrial changes involved in AMD pathogenesis while, conversely, AMD cybrids upregulate the release of these neuroprotective factors by hRPCs while promoting hRPC differentiation. These in vitro data provide evidence that hRPCs may have therapeutic potential in atrophic AMD.

13.
PLoS One ; 16(1): e0246114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33513185

RESUMO

PURPOSE: Mitochondrial (mt) DNA damage is associated with age-related macular degeneration (AMD) and other human aging diseases. This study was designed to quantify and characterize mtDNA low-frequency heteroplasmy single nucleotide polymorphisms (SNPs) of three different tissues isolated from AMD subjects using Next Generation Sequencing (NGS) technology. METHODS: DNA was extracted from neural retina, [RPE+choroid] and blood from three deceased age-related macular degeneration (AMD) subjects. Entire mitochondrial genomes were analyzed for low-frequency heteroplasmy SNPs using NGS technology that independently sequenced both mtDNA strands. This deep sequencing method (average sequencing depth of 30,000; range 1,000-100,000) can accurately differentiate low-frequency heteroplasmy SNPs from DNA modification artifacts. Twenty-three 'hot-spot' heteroplasmy mtDNA SNPs were analyzed in 222 additional blood samples. RESULTS: Germline homoplasmy SNPs that defined mtDNA haplogroups were consistent in the three tissues of each subject. Analyses of SNPs with <40% heteroplasmy revealed the blood had significantly greater numbers of heteroplasmy SNPs than retina alone (p≤0.05) or retina+choroid combined (p = 0.008). Twenty-three 'hot-spot' mtDNA heteroplasmy SNPs were present, with three being non-synonymous (amino acid change). Four 'hot-spot' heteroplasmy SNPs (m.1120C>T, m.1284T>C, m.1556C>T, m.7256C>T) were found in additional samples (n = 222). Five heteroplasmy SNPs (m.4104A>G, m.5320C>T, m.5471G>A, m.5474A>G, m.5498A>G) declined with age. Two heteroplasmy SNPs (m.13095T>C, m.13105A>G) increased in AMD compared to Normal samples. In the heteroplasmy SNPs, very few transversion mutations (purine to pyrimidine or vice versa, associated with oxidative damage) were found and the majority were transition changes (purine to purine or pyrimidine to pyrimidine, associated with replication errors). CONCLUSION: Within an individual, the blood, retina and [RPE+choroid] contained identical homoplasmy SNPs representing inherited germline mtDNA haplogroup. NGS methodology showed significantly more mtDNA heteroplasmy SNPs in blood compared to retina and [RPE+choroid], suggesting the latter tissues have substantial protection. Significantly higher heteroplasmy levels of m.13095T>C and m.13105A>G may represent potential AMD biomarkers. Finally, high levels of transition mutations suggest that accumulation of heteroplasmic SNPs may occur through replication errors rather than oxidative damage.


Assuntos
DNA Mitocondrial/genética , Heteroplasmia , Degeneração Macular/genética , Mitocôndrias/genética , Polimorfismo de Nucleotídeo Único , Idoso de 80 Anos ou mais , Corioide/metabolismo , Corioide/patologia , DNA Mitocondrial/sangue , Feminino , Humanos , Degeneração Macular/sangue , Masculino , Mitocôndrias/metabolismo , Retina/metabolismo , Retina/patologia
14.
Biochim Biophys Acta Gen Subj ; 1865(4): 129798, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33217521

RESUMO

PURPOSE: Extracellular vesicles (EVs) are predicted to represent the internal state of cells. In polarized RPE monolayers, EVs can mediate long-distance communication, requiring endocytosis via protein-protein interactions. EV uptake from oxidatively stressed donor cells triggers loss in transepithelial resistance (TER) in recipient monolayers mediated by HDAC6. Here, we examine EVs released from RPE cells with identical nuclear genes but different mitochondrial (mt)DNA haplogroups (H, J). J-cybrids produce less ATP, and the J-haplogroup is associated with a higher risk for age-related macular degeneration. METHODS: Cells were grown as mature monolayers to either collect EVs from apical surfaces or to serve as naïve recipient cells. Transfer assays, transferring EVs to a recipient monolayer were performed, monitoring TER and EV-uptake. The presence of known EV surface proteins was quantified by protein chemistry. RESULTS: H- and J-cybrids were confirmed to exhibit different levels of TER and energy metabolism. EVs from J-cybrids reduced TER in recipient ARPE-19 cells, whereas EVs from H-cybrids were ineffective. TER reduction was mediated by HDAC6 activity, and EV uptake required interaction between integrin and its ligands and surface proteoglycans. Protein quantifications confirmed elevated levels of fibronectin and annexin A2 on J-cybrid EVs. CONCLUSIONS: We speculate that RPE EVs have a finite set of ligands (membrane proteoglycans and integrins and/or annexin A2) that are elevated in EVs from stressed cells; and that if EVs released by the RPE could be captured from serum, that they might provide a disease biomarker of RPE-dependent diseases.


Assuntos
DNA Mitocondrial/metabolismo , Vesículas Extracelulares/metabolismo , Mitocôndrias/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transporte Biológico , Linhagem Celular , Metabolismo Energético , Humanos , Epitélio Pigmentado da Retina/citologia
15.
Exp Eye Res ; 203: 108287, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33075294

RESUMO

PURPOSE: Intravitreal injections of anti-vascular endothelial growth factor (VEGF) treatments are currently used to treat wet age-related macular degeneration (AMD), diabetic retinopathy, and macular edema. Chronic, repetitive treatments with anti-VEGF may have unintended consequences beyond the inhibition of angiogenesis. Most recently, clinical trials have been conducted with risuteganib (RSG, Luminate®), which is anti-angiogenic and has neuroprotective and anti-inflammatory properties. Mitochondrial damage and dysfunction play a major role in development of AMD. Transmitochondrial cybrids are cell lines established by fusing human retinal pigment epithelial (RPE) cells that are Rho0 (lacking mtDNA) with platelets isolated from AMD subjects or age-matched normal subjects. Cybrid cell lines have identical nuclei but mitochondria from different subjects, enabling investigation of the functional consequences of damaged AMD mitochondria. The present study compares the responses of AMD cybrids treated with bevacizumab (Bmab, Avastin®) versus risuteganib (RSG, Luminate®). METHODS: Cybrids were created by fusing mtDNA depleted ARPE-19 cells with platelets from AMD or age-matched normal patients. AMD (n = 5) and normal (n = 3) cybrids were treated for 48 h with or without 1x clinical dose of 1.25 mg/50 µl (25,000 µg/ml) of Bmab or 1.0 mg/50 µl (20,000 µg/ml) of RSG. Cultures were analyzed for levels of cleaved caspase 3/7 and NucLight Rapid Red staining (IncuCyte® Live Cell Imager), mitochondrial membrane potential (ΔΨm, JC1 assay) or reactive oxygen species (ROS, H2DCFDA assay). Expression levels of genes related to the following pathways were analyzed with qRT-PCR: Apoptosis (BAX, BCL2L13, CASP-3, -7, -9); angiogenesis (VEGFA, HIF1α, PDGF); integrins (ITGB-1, -3, -5, ITGA-3, -5, -V); mitochondrial biogenesis (PGC1α, POLG); oxidative stress (SOD2, GPX3, NOX4); inflammation (IL-6, -18, -1ß, IFN-ß1); and signaling (P3KCA, PI3KR1). Statistical analyses were performed using GraphPad Prism software. RESULTS: The untreated AMD cybrids had significantly higher levels of cleaved caspase 3/7 compared to the untreated normal cybrids. The Bmab-treated AMD cybrids showed elevated levels of cleaved caspase 3/7 compared to untreated AMD or RSG-treated AMD cybrids. The Bmab-treated cybrids had lower ΔΨm compared to untreated AMD or RSG-treated AMD cybrids. The ROS levels were not changed with Bmab or RSG treatment. Results showed that Bmab-treated cybrids had higher expression levels of inflammatory (IL-6, IL1-ß), oxidative stress (NOX4) and angiogenesis (VEGFA) genes compared to untreated AMD, while RSG-treated cybrids had lower expression levels of apoptosis (BAX), angiogenesis (VEGFA) and integrin (ITGB1) genes. CONCLUSIONS: These data suggest that the mechanism(s) of action of RSG, an integrin regulator, and Bmab, a recombinant monoclonal antibody, affect the AMD RPE cybrid cells differently, with the former having more anti-apoptosis properties, which may be desirable in treating degenerative ocular diseases.


Assuntos
Inibidores da Angiogênese/farmacologia , Bevacizumab/farmacologia , Plaquetas/citologia , Células Híbridas/efeitos dos fármacos , Peptídeos/farmacologia , Epitélio Pigmentado da Retina/citologia , Degeneração Macular Exsudativa/sangue , Idoso , Idoso de 80 Anos ou mais , Plaquetas/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , DNA Mitocondrial/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Células Híbridas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Potencial da Membrana Mitocondrial , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
16.
J Ophthalmic Vis Res ; 15(4): 470-480, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133437

RESUMO

PURPOSE: 7-ketocholesterol (7kCh), a natural byproduct of oxidation in lipoprotein deposits is implicated in the pathogenesis of diabetic retinopathy and age-related macular degeneration (AMD). This study was performed to investigate whether several clinical drugs can inhibit 7kCh-induced caspase activation and mitigate its apoptotic effects on retinal cells in vitro. METHODS: Two populations of retinal cells, human retinal pigment epithelial cells (ARPE-19) and rat neuroretinal cells (R28) were exposed to 7kCh in the presence of the following inhibitors: Z-VAD-FMK (pan-caspase inhibitor), simvastatin, memantine, epicatechin, and Z-IETD-FMK (caspase-8 inhibitor) or Z-ATAD-FMK (caspase-12 inhibitor). Caspase-3/7, -8, and -12 activity levels were measured by fluorochrome caspase assays to quantify cell death. IncuCyte live-cell microscopic images were obtained to quantify cell counts. RESULTS: Exposure to 7kCh for 24 hours significantly increased caspase activities for both ARPE-19 and R28 cells (P < 0.05). In ARPE cells, pretreatment with various drugs had significantly lower caspase-3/7, -8, and -12 activities, reported in % change in mean signal intensity (msi): Z-VAD-FMK (48% decrease, P < 0.01), memantine (decreased 47.8% at 1 µM, P = 0.0039 and 81.9% at 1 mM, P < 0.001), simvastatin (decreased 85.3% at 0.01 µM, P < 0.001 and 84.8% at 0.05 µM, P < 0.001) or epicatechin (83.6% decrease, P < 0.05), Z-IETD-FMK (68.1% decrease, P < 0.01), and Z-ATAD-FMK (47.7% decrease, P = 0.0017). In contrast, R28 cells exposed to 7kCh continued to have elevated caspase-3/7, -8, and -12 activities (between 25.7% decrease and 17.5% increase in msi, P > 0.05) regardless of the pretreatment. CONCLUSION: Several current drugs protect ARPE-19 cells but not R28 cells from 7kCh-induced apoptosis, suggesting that a multiple-drug approach is needed to protect both cells types in various retinal diseases.

17.
PeerJ ; 8: e9908, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062421

RESUMO

BACKGROUND: Drug therapy yields different results depending on its recipient population. Cisplatin, a commonly used chemotherapeutic agent, causes different levels of resistance and side effects for different patients, but the mechanism(s) are presently unknown. It has been assumed that this variation is a consequence of differences in nuclear (n) DNA, epigenetics, or some external factor(s). There is accumulating evidence that an individual's mitochondrial (mt) DNA may play a role in their response to medications. Variations within mtDNA can be observed, and an individual's mtDNA can be categorized into haplogroups that are defined by accumulations of single nucleotide polymorphisms (SNPs) representing different ethnic populations. METHODS: The present study was conducted on transmitochondrial cytoplasmic hybrids (cybrids) that possess different maternal-origin haplogroup mtDNA from African (L), Hispanic [A+B], or Asian (D) backgrounds. Cybrids were created by fusing Rho0 ARPE-19 cells (lacking mtDNA) with platelets, which contain numerous mitochondria but no nuclei. These cybrid cells were cultured to passage five, treated with cisplatin, incubated for 48 h, then analyzed for cell metabolic activity (tetrazolium dye (MTT) assay), mitochondrial membrane potential (JC-1 assay), cytotoxicity (lactate dehydrogenase (LDH) assay), and gene expression levels for ALK, BRCA1, EGFR, and ERBB2/HER2. RESULTS: Results indicated that untreated cybrids with varying mtDNA haplogroups had similar relative metabolic activity before cisplatin treatment. When treated with cisplatin, (1) the decline in metabolic activity was greatest in L (27.4%, p < 0.012) < D (24.86%, p = 0.0001) and [A+B] cybrids (24.67%, p = 0.0285) compared to untreated cybrids; (2) mitochondrial membrane potential remained unchanged in all cybrids (3) LDH production varied between cybrids (L >[A+B], p = 0.0270). (4) The expression levels decreased for ALK in L (p < 0.0001) and [A+B] (p = 0.0001) cybrids but not in D cybrids (p = 0.285); and decreased for EGFR in [A+B] cybrids (p = 0.0246) compared to untreated cybrids. CONCLUSION: Our findings suggest that an individual's mtDNA background may be associated with variations in their response to cisplatin treatment, thereby affecting the efficiency and the severity of side effects from the treatment.

18.
BMJ Open Ophthalmol ; 5(1): e000458, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32724857

RESUMO

BACKGROUND: We aim to determine the possible adverse effects of ciprofloxacin (CPFX) and tetracycline (TETRA), as examples of bactericidal and bacteriostatic agents, respectively, on cultured human retinal pigment epithelial cells (ARPE-19). METHODS: Cells were treated with 30, 60 and 120 µg/mL of CPFX and TETRA. Cell metabolism was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. JC-1 dye (5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide) assay was conducted to measure the mitochondrial membrane potential (MMP). The level of reactive oxygen species (ROS) was measured using the -2',7'-dichlorodihydrofluorescein diacetate assay (H2DCFDA). Quantitative real-time PCR was performed to analyse the gene expression levels associated with apoptosis (BAX, BCL2-L13, BCL2, Caspase 3, Caspase 7 and Caspase 9), inflammatory (interleukin-1ß (IL-1ß), IL-6, IL-33, transforming growth factor-α (TGF-α), TGF-ß1 and TGF-ß2) and antioxidant pathways (SOD2, SOD3, GPX3 and NOX4), along with the mitochondrial DNA (mtDNA) copy numbers. RESULTS: Results illustrated that while all three concentrations of CPFX decreased cellular viability of ARPE-19 during all incubation periods, the 120 µg/mL TETRA resulted in increased cellular viability. At 48 and 72 hours, levels of MMP and ROS decreased significantly with each antibiotic. BAX, BCL2-L13, CASP-7, CASP-9, SOD2 and GPX3 genes overexpressed by either antibiotics. There was higher expression of IL-6 and IL-1B with TETRA treatment. The level of mtDNA decreased using both treatments. CONCLUSIONS: Clinically relevant concentrations of CPFX and TETRA have detrimental impacts on ARPE-19 cell lines in vitro, including upregulation of genes related to apoptosis, inflammation and antioxidant pathways. Additional studies are warranted to investigate if these harmful effects might be seen in retinal degeneration models in vivo.

20.
Mol Neurobiol ; 57(3): 1636-1655, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31811564

RESUMO

Diabetic retinopathy (DR) is the most common cause of blindness for individuals under the age of 65. This loss of vision can be due to ischemia, neovascularization, and/or diabetic macular edema, which are caused by breakdown of the blood-retina barrier at the level of the retinal pigment epithelium (RPE) and inner retinal vasculature. The prevalence of diabetes and its complications differ between Caucasian-Americans and certain minority populations, such as African-Americans and Asian-Americans. Individuals can be classified by their mitochondrial haplogroups, which are collections of single nucleotide polymorphisms (SNPs) in mitochondrial DNA (mtDNA) representing ancient geographic origins of populations. In this study, we compared the responses of diabetic human RPE cybrids, cell lines containing identical nuclei but mitochondria from either European (maternal European) or maternal African or Asian individuals, to hypoxia and high glucose levels. The African and Asian diabetic ([Afr+Asi]/DM) cybrids showed (1) resistance to both hyperglycemic and hypoxic stresses; (2) downregulation of pro-apoptotic indicator BAX; (3) upregulation of DNA methylation genes, such as DNMT3A and DNMT3B; and (4) resistance to DNA demethylation by the methylation inhibitor 5-Aza-2'-deoxycytidine (5-Aza-dC) compared to European diabetic (Euro/DM) cybrids. Our findings suggest that mitochondria from African and Asian diabetic subjects possess a "metabolic memory" that confers resistance against hyperglycemia, hypoxia, and demethylation, and that this "metabolic memory" can be transferred into the RPE cybrid cell lines in vitro.


Assuntos
DNA Mitocondrial/genética , Retinopatia Diabética/genética , Edema Macular/genética , Mitocôndrias/metabolismo , Epitélio Pigmentado da Retina/citologia , Adulto , Idoso , Povo Asiático , Células Cultivadas , Diabetes Mellitus/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Transdução de Sinais/genética , População Branca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA