Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Physiol ; 233(2): 1500-1511, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28574591

RESUMO

In bone marrow (BM), hematopoietic elements are mingled with adipocytes (BM-A), which are the most abundant stromal component in the niche. BM-A progressively increase with aging, eventually occupying up to 50% of BM cavities. In this work, the role played by BM-A was explored by studying primary human BM-A isolated from hip surgery patients at the molecular level, through microarray analysis, and at the functional level, by assessing their relationship with primary human hematopoietic stem cells (HSC) by the long-term culture initiating cell (LTC-IC) assay. Findings demonstrated that BM-A are capable of supporting HSC survival in the LTC-IC assay, since after 5 weeks of co-culture, HSC were still able to proliferate and differentiate. Furthermore, critical molecules such as C-X-C motif chemokine 12 (CXCL12), interleukin (IL)-8, colony-stimulating factor 3 (CSF3), and leukaemia inhibitory factor (LIF), were expressed at similar levels in BM-A and in primary human BM mesenchymal stromal cells (BM-MSC), whereas IL-3 was higher in BM-A. Interestingly, BM-A displayed a different gene expression profile compared with subcutaneous adipose tissue adipocytes (AT-A) collected from abdominal surgery patients, especially in terms of regulation of lipid metabolism, stemness genes, and white-to-brown differentiation pathways. Accordingly, analysis of the gene pathways involved in hematopoiesis regulation showed that BM-A are more closely related to BM-MSC than to AT-A. The present data suggest that BM-A play a supporting role in the hematopoietic niche and directly sustain HSC survival.


Assuntos
Adipócitos/fisiologia , Células da Medula Óssea/fisiologia , Comunicação Celular , Células-Tronco Hematopoéticas/fisiologia , Adipócitos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Células da Medula Óssea/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Quimiocina CXCL12/metabolismo , Técnicas de Cocultura , Fatores Estimuladores de Colônias/metabolismo , Feminino , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Humanos , Interleucina-8/metabolismo , Fator Inibidor de Leucemia/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Transdução de Sinais , Nicho de Células-Tronco , Gordura Subcutânea/citologia , Gordura Subcutânea/fisiologia , Fatores de Tempo , Transcriptoma
3.
Cytotherapy ; 17(9): 1292-301, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26276010

RESUMO

BACKGROUND AIMS: Adipose tissue is a critical organ that plays a major role in energy balance regulation and the immune response through intricate signals. METHODS: We report on the inter-relation between mature adipocytes and lymphocytes in terms of adipocyte-derived T-cell chemo-attractants and adipocyte metabolic effects on lymphocytes. RESULTS: During the culture time, mature adipocytes changed their structural and functional properties into de-differentiated cells. Isolated mature adipocytes expressed significantly higher levels of CIITA, major histocompatibility complex II (human leukocyte antigen [HLA]-DR) and costimulatory signal molecule CD80 compared with adipocytes after the de-differentiation process. Moreover, human leukocyte antigen-G, which may prevent the immune responses of mesenchymal stromal cells, was expressed at lower level in mature adipocytes compared with de-differentiated adipocytes. In line with these molecular data, functional results showed different immunoregulatory properties between adipocytes before and after the de-differentiation process. Mature adipocytes stimulated the proliferation of total lymphocytes and immunoselected cell populations CD3+, CD4+ and CD8+ in a direct contact-dependent way that involved the major histocompatibility complex I and II pathways. Moreover, adipocytes secreted potential chemo-attractant factors, but data showed that adipocyte-derived culture medium was not sufficient to activate lymphocyte proliferation, suggesting that a direct contact between adipocytes and immune cells was needed. However, specific mature adipocyte cytokines enhanced lymphocyte proliferation in a mixed lymphocyte reaction. CONCLUSIONS: In conclusion, cross-talk occurs between adipocytes and lymphocytes within adipose tissue involving T-cell chemo-attraction by mature adipocytes. Our findings, together with current observations in the field, provide a rationale to identify adipocyte-lymphocyte cross-talk that instigates adipose inflammation.


Assuntos
Adipócitos/imunologia , Tecido Adiposo/imunologia , Comunicação Celular/imunologia , Inflamação/imunologia , Linfócitos T/imunologia , Adipócitos/citologia , Tecido Adiposo/citologia , Tecido Adiposo/fisiologia , Idoso , Idoso de 80 Anos ou mais , Antígeno B7-1/imunologia , Diferenciação Celular/imunologia , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Antígenos HLA-DR/imunologia , Antígenos HLA-G/biossíntese , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Ativação Linfocitária/imunologia , Teste de Cultura Mista de Linfócitos , Células-Tronco Mesenquimais/imunologia , Pessoa de Meia-Idade , Proteínas Nucleares/imunologia , Linfócitos T/citologia , Transativadores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA