Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Photonics ; 16(1): 79-85, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34992677

RESUMO

Dipolar bosonic gases are currently the focus of intensive research due to their interesting many-body physics in the quantum regime. Their experimental embodiments range from Rydberg atoms to GaAs double quantum wells and van der Waals heterostructures built from transition metal dichalcogenides. Although quantum gases are very dilute, mutual interactions between particles could lead to exotic many-body phenomena such as Bose-Einstein condensation and high-temperature superfluidity. Here, we report the effect of repulsive dipolar interactions on the dynamics of interlayer excitons in the dilute regime. By using spatial and time-resolved photoluminescence imaging, we observe the dynamics of exciton transport, enabling a direct estimation of the exciton mobility. The presence of interactions significantly modifies the diffusive transport of excitons, effectively acting as a source of drift force and enhancing the diffusion coefficient by one order of magnitude. The repulsive dipolar interactions combined with the electrical control of interlayer excitons opens up appealing new perspectives for excitonic devices.

2.
Nat Commun ; 11(1): 4806, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968069

RESUMO

Atomic-scale disorder in two-dimensional transition metal dichalcogenides is often accompanied by local magnetic moments, which can conceivably induce long-range magnetic ordering into intrinsically non-magnetic materials. Here, we demonstrate the signature of long-range magnetic orderings in defective mono- and bi-layer semiconducting PtSe2 by performing magnetoresistance measurements under both lateral and vertical measurement configurations. As the material is thinned down from bi- to mono-layer thickness, we observe a ferromagnetic-to-antiferromagnetic crossover, a behavior which is opposite to the one observed in the prototypical 2D magnet CrI3. Our first-principles calculations, supported by aberration-corrected transmission electron microscopy imaging of point defects, associate this transition to the interplay between the defect-induced magnetism and the interlayer interactions in PtSe2. Furthermore, we show that graphene can be effectively used to probe the magnetization of adjacent semiconducting PtSe2. Our findings in an ultimately scaled monolayer system lay the foundation for atom-by-atom engineering of magnetism in otherwise non-magnetic 2D materials.

3.
Nat Nanotechnol ; 14(12): 1104-1109, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636411

RESUMO

Valleytronics is an appealing alternative to conventional charge-based electronics that aims at encoding data in the valley degree of freedom, that is, the information as to which extreme of the conduction or valence band carriers are occupying. The ability to create and control valley currents in solid-state devices could therefore enable new paradigms for information processing. Transition metal dichalcogenides (TMDCs) are a promising platform for valleytronics due to the presence of two inequivalent valleys with spin-valley locking1 and a direct bandgap2,3, which allows optical initialization and readout of the valley state4,5. Recent progress on the control of interlayer excitons in these materials6-8 could offer an effective way to realize optoelectronic devices based on the valley degree of freedom. Here, we show the generation and transport over mesoscopic distances of valley-polarized excitons in a device based on a type-II TMDC heterostructure. Engineering of the interlayer coupling results in enhanced diffusion of valley-polarized excitons, which can be controlled and switched electrically. Furthermore, using electrostatic traps, we can increase the exciton concentration by an order of magnitude, reaching densities in the order of 1012 cm-2, opening the route to achieving a coherent quantum state of valley-polarized excitons via Bose-Einstein condensation.

4.
Nat Nanotechnol ; 14(7): 674-678, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31209281

RESUMO

Defects are ubiquitous in solids and often introduce new properties that are absent in pristine materials. One of the opportunities offered by these crystal imperfections is an extrinsically induced long-range magnetic ordering1, a long-time subject of theoretical investigations1-3. Intrinsic, two-dimensional (2D) magnetic materials4-7 are attracting increasing attention for their unique properties, which include layer-dependent magnetism4 and electric field modulation6. Yet, to induce magnetism into otherwise non-magnetic 2D materials remains a challenge. Here we investigate magneto-transport properties of ultrathin PtSe2 crystals and demonstrate an unexpected magnetism. Our electrical measurements show the existence of either ferromagnetic or antiferromagnetic ground-state orderings that depends on the number of layers in this ultrathin material. The change in the device resistance on the application of a ~25 mT magnetic field is as high as 400 Ω with a magnetoresistance value of 5%. Our first-principles calculations suggest that surface magnetism induced by the presence of Pt vacancies and the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange couplings across ultrathin films of PtSe2 are responsible for the observed layer-dependent magnetism. Given the existence of such unavoidable growth-related vacancies in 2D materials8,9, these findings can expand the range of 2D ferromagnets into materials that would otherwise be overlooked.

5.
Nat Photonics ; 13(2): 131-136, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30886643

RESUMO

Long-lived interlayer excitons in van der Waals heterostructures based on transition metal dichalcogenides, together with unique spin-valley physics, make them promising for next-generation photonic and valleytronic devices. While the emission characteristics of interlayer excitons have been studied, efficient manipulation of their valley-state, a necessary requirement for information encoding, is still lacking. Here, we demonstrate comprehensive electrical control of interlayer excitons in a MoSe2/WSe2 heterostructure. Encapsulation of our well-aligned stack with hexagonal boron nitride (h-BN) allows us to resolve two separate narrow interlayer transitions with opposite helicities under circularly polarized excitation, either preserving or reversing the polarization of incoming light. By electrically controlling their relative intensities, we realize a polarization switch with tuneable emission intensity and wavelength. Finally, we demonstrate large Zeeman shifts of these two transitions upon application of an external magnetic field. These results are interpreted within the picture of moiré-induced brightening of forbidden optical transitions. The ability to control the polarization of interlayer excitons is a step forward towards the manipulation of the valley degree-of-freedom in realistic device applications.

6.
Nature ; 560(7718): 340-344, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30046107

RESUMO

Devices that rely on the manipulation of excitons-bound pairs of electrons and holes-hold great promise for realizing efficient interconnects between optical data transmission and electrical processing systems. Although exciton-based transistor actions have been demonstrated successfully in bulk semiconductor-based coupled quantum wells1-3, the low temperature required for their operation limits their practical application. The recent emergence of two-dimensional semiconductors with large exciton binding energies4,5 may lead to excitonic devices and circuits that operate at room temperature. Whereas individual two-dimensional materials have short exciton diffusion lengths, the spatial separation of electrons and holes in different layers in heterostructures could help to overcome this limitation and enable room-temperature operation of mesoscale devices6-8. Here we report excitonic devices made of MoS2-WSe2 van der Waals heterostructures encapsulated in hexagonal boron nitride that demonstrate electrically controlled transistor actions at room temperature. The long-lived nature of the interlayer excitons in our device results in them diffusing over a distance of five micrometres. Within our device, we further demonstrate the ability to manipulate exciton dynamics by creating electrically reconfigurable confining and repulsive potentials for the exciton flux. Our results make a strong case for integrating two-dimensional materials in future excitonic devices to enable operation at room temperature.

7.
Nat Commun ; 9(1): 919, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500434

RESUMO

The possibility of tailoring physical properties by changing the number of layers in van der Waals crystals is one of the driving forces behind the emergence of two-dimensional materials. One example is bulk MoS2, which changes from an indirect gap semiconductor to a direct bandgap semiconductor in the monolayer form. Here, we show a much bigger tuning range with a complete switching from a metal to a semiconductor in atomically thin PtSe2 as its thickness is reduced. Crystals with a thickness of ~13 nm show metallic behavior with a contact resistance as low as 70 Ω·µm. As they are thinned down to 2.5 nm and below, we observe semiconducting behavior. In such thin crystals, we demonstrate ambipolar transport with a bandgap smaller than 2.2 eV and an on/off ratio of ~105. Our results demonstrate that PtSe2 possesses an unusual behavior among 2D materials, enabling novel applications in nano and optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA