Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Rep ; 43(1): 113627, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38157296

RESUMO

Vascular morphogenesis requires a delicate gradient of Notch signaling controlled, in part, by the distribution of ligands (Dll4 and Jagged1). How Jagged1 (JAG1) expression is compartmentalized in the vascular plexus remains unclear. Here, we show that Jag1 mRNA is a direct target of zinc-finger protein 36 (ZFP36), an RNA-binding protein involved in mRNA decay that we find robustly induced by vascular endothelial growth factor (VEGF). Endothelial cells lacking ZFP36 display high levels of JAG1 and increase angiogenic sprouting in vitro. Furthermore, mice lacking Zfp36 in endothelial cells display mispatterned and increased levels of JAG1 in the developing retinal vascular plexus. Abnormal levels of JAG1 at the sprouting front alters NOTCH1 signaling, increasing the number of tip cells, a phenotype that is rescued by imposing haploinsufficiency of Jag1. Our findings reveal an important feedforward loop whereby VEGF stimulates ZFP36, consequently suppressing Jag1 to enable adequate levels of Notch signaling during sprouting angiogenesis.


Assuntos
Proteínas de Membrana , Fator A de Crescimento do Endotélio Vascular , Animais , Camundongos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células , Células Endoteliais/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica , Receptores Notch/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Sci Adv ; 9(36): eadi2232, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682999

RESUMO

Vitamin B6 is a vital micronutrient across cell types and tissues, and dysregulated B6 levels contribute to human disease. Despite its importance, how B6 vitamer levels are regulated is not well understood. Here, we provide evidence that B6 dynamics are rapidly tuned by precise compartmentation of pyridoxal kinase (PDXK), the rate-limiting B6 enzyme. We show that canonical Wnt rapidly led to the accumulation of inactive B6 by shunting cytosolic PDXK into lysosomes. PDXK was modified with methyl-arginine Degron (MrDegron), a protein tag for lysosomes, which enabled delivery via microautophagy. Hyperactive lysosomes resulted in the continuous degradation of PDXK and B6 deficiency that promoted proliferation in Wnt-driven colorectal cancer (CRC) cells. Pharmacological or genetic disruption of the coordinated MrDegron proteolytic pathway was sufficient to reduce CRC survival in cells and organoid models. In sum, this work contributes to the repertoire of micronutrient-regulated processes that enable cancer cell growth and provides insight into the functional impact of B6 deficiencies for survival.


Assuntos
Peptídeo Hidrolases , Vitamina B 6 , Humanos , Proteólise , Micronutrientes , Vitaminas
3.
Cell Rep ; 42(5): 112411, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37086408

RESUMO

Cellular metabolism is tightly regulated by growth factor signaling, which promotes metabolic rewiring to support growth and proliferation. While growth factor-induced transcriptional and post-translational modes of metabolic regulation have been well defined, whether post-transcriptional mechanisms impacting mRNA stability regulate this process is less clear. Here, we present the ZFP36/L1/L2 family of RNA-binding proteins and mRNA decay factors as key drivers of metabolic regulation downstream of acute growth factor signaling. We quantitatively catalog metabolic enzyme and nutrient transporter mRNAs directly bound by ZFP36 following growth factor stimulation-many of which encode rate-limiting steps in metabolic pathways. Further, we show that ZFP36 directly promotes the mRNA decay of Enolase 2 (Eno2), altering Eno2 protein expression and enzymatic activity, and provide evidence of a ZFP36/Eno2 axis during VEGF-stimulated developmental retinal angiogenesis. Thus, ZFP36-mediated mRNA decay serves as an important mode of metabolic regulation downstream of growth factor signaling within dynamic cell and tissue states.


Assuntos
Proteínas de Ligação a RNA , Transdução de Sinais , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Estabilidade de RNA/genética , Tristetraprolina/genética , Tristetraprolina/metabolismo
4.
Cell Rep ; 32(4): 107973, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32726636

RESUMO

Canonical Wnt signaling is emerging as a major regulator of endocytosis. Here, we report that Wnt-induced macropinocytosis is regulated through glycogen synthase kinase 3 (GSK3) and the ß-catenin destruction complex. We find that mutation of Axin1, a tumor suppressor and component of the destruction complex, results in the activation of macropinocytosis. Surprisingly, inhibition of GSK3 by lithium chloride (LiCl), CHIR99021, or dominant-negative GSK3 triggers macropinocytosis. GSK3 inhibition causes a rapid increase in acidic endolysosomes that is independent of new protein synthesis. GSK3 inhibition or Axin1 mutation increases lysosomal activity, which can be followed with tracers of active cathepsin D, ß-glucosidase, and ovalbumin degradation. Microinjection of LiCl into the blastula cavity of Xenopus embryos causes a striking increase in dextran macropinocytosis. The effects of GSK3 inhibition on protein degradation in endolysosomes are blocked by the macropinocytosis inhibitors EIPA or IPA-3, suggesting that increases in membrane trafficking drive lysosomal activity.


Assuntos
Proteína Axina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Pinocitose/fisiologia , Proteínas de Xenopus/metabolismo , Animais , Linhagem Celular Tumoral , Endocitose/fisiologia , Endossomos/metabolismo , Quinase 3 da Glicogênio Sintase/fisiologia , Lisossomos/metabolismo , Fosforilação , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas de Xenopus/fisiologia , Xenopus laevis , beta Catenina/metabolismo
5.
J Cell Biochem ; 117(9): 2128-37, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26888666

RESUMO

Mesenchymal stem cells (MSCs) are an excellent source for numerous cellular therapies due to their simple isolation, low immunogenicity, multipotent differentiation potential and regenerative secretion profile. However, over-expanded MSCs show decreased therapeutic efficacy. This shortcoming may be circumvented by identifying methods that promote self-renewal of MSCs in culture. HMGA2 is a DNA-binding protein that regulates self-renewal in multiple types of stem cells through chromatin remodeling, but its impact on human bone marrow-derived MSCs is not known. Using an isolation method to obtain pure MSCs within 9 days in culture, we show that expression of HMGA2 quickly decreases during early expansion of MSCs, while let-7 microRNAs (which repress HMGA2) are simultaneously increased. Remarkably, we demonstrate that FGF-2, a growth factor commonly used to promote self-renewal in MSCs, rapidly induces HMGA2 expression in a time- and concentration-dependent manner. The signaling pathway involves FGF-2 receptor 1 (FGFR1) and ERK1/2, but acts independent from let-7. By silencing HMGA2 using shRNAs, we demonstrate that HMGA2 is necessary for MSC proliferation. However, we also show that over-expression of HMGA2 does not increase cell proliferation, but rather abrogates the mitogenic effect of FGF-2, possibly through inhibition of FGFR1. In addition, using different methods to assess in vitro differentiation, we show that modulation of HMGA2 inhibits adipogenesis, but does not affect osteogenesis of MSCs. Altogether, our results show that HMGA2 expression is associated with highly proliferating MSCs, is tightly regulated by FGF-2, and is involved in both proliferation and adipogenesis of MSCs. J. Cell. Biochem. 117: 2128-2137, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Células da Medula Óssea/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína HMGA2/biossíntese , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Adipogenia/efeitos dos fármacos , Adipogenia/fisiologia , Células da Medula Óssea/citologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Células-Tronco Mesenquimais/citologia , MicroRNAs/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA