Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Noncoding RNA ; 9(3)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37368333

RESUMO

Virus-encoded microRNAs were first reported in the Epstein-Barr virus in 2004. Subsequently, a few hundred viral miRNAs have been identified, mainly in DNA viruses belonging to the herpesviridae family. To date, only 30 viral miRNAs encoded by RNA viruses are reported by miRBase. Since the outbreak of the SARS-CoV-2 pandemic, several studies have predicted and, in some cases, experimentally validated miRNAs originating from the positive strand of the SARS-CoV-2 genome. By integrating NGS data analysis and qRT-PCR approaches, we found that SARS-CoV-2 also encodes for a viral miRNA arising from the minus (antisense) strand of the viral genome, in the region encoding for ORF1ab, herein referred to as SARS-CoV-2-miR-AS1. Our data show that the expression of this microRNA increases in a time course analysis of SARS-CoV-2 infected cells. Furthermore, enoxacin treatment enhances the accumulation of the mature SARS-CoV-2-miR-AS1 in SARS-CoV-2 infected cells, arguing for a Dicer-dependent processing of this small RNA. In silico analysis suggests that SARS-CoV-2-miR-AS1 targets a set of genes which are translationally repressed during SARS-CoV-2 infection. We experimentally validated that SARS-CoV-2-miR-AS1 targets FOS, thus repressing the AP-1 transcription factor activity in human cells.

2.
Cell Mol Life Sci ; 80(2): 52, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695883

RESUMO

One of the major mysteries in science is how it is possible to pack the cellular chromatin with a total length of over 1 m, into a small sphere with a diameter of 5 mm "the nucleus", and even more difficult to envisage how to make it functional. Although we know that compaction is achieved through the histones, however, the DNA needs to be accessible to the transcription machinery and this is allowed thanks to a variety of very complex epigenetic mechanisms. Either DNA (methylation) or post-translational modifications of histone proteins (acetylation, methylation, ubiquitination and sumoylation) play a crucial role in chromatin remodelling and consequently on gene expression. Recently the serotonylation and dopaminylation of the histone 3, catalyzed by the Transglutaminase type 2 (TG2), has been reported. These novel post-translational modifications catalyzed by a predominantly cytoplasmic enzyme opens a new avenue for future investigations on the enzyme function itself and for the possibility that other biological amines, substrate of TG2, can influence the genome regulation under peculiar cellular conditions. In this review we analyzed the nuclear TG2's biology by discussing both its post-translational modification of various transcription factors and the implications of its epigenetic new face. Finally, we will focus on the potential impact of these events in human diseases.


Assuntos
Montagem e Desmontagem da Cromatina , Citoplasma , Epigênese Genética , Histonas , Transglutaminases , Humanos , Acetilação , Cromatina , DNA/genética , Metilação de DNA , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Transglutaminases/genética , Transglutaminases/metabolismo , Citoplasma/enzimologia , Citoplasma/genética , Citoplasma/metabolismo , Núcleo Celular/enzimologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia
3.
Clin Proteomics ; 19(1): 38, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348270

RESUMO

Most patients infected with SARS-CoV-2 display mild symptoms with good prognosis, while 20% of patients suffer from severe viral pneumonia and up to 5% may require intensive care unit (ICU) admission due to severe acute respiratory syndrome, which could be accompanied by multiorgan failure.Plasma proteomics provide valuable and unbiased information about disease progression and therapeutic candidates. Recent proteomic studies have identified molecular changes in plasma of COVID-19 patients that implied significant dysregulation of several aspects of the inflammatory response accompanied by a general metabolic suppression. However, which of these plasma alterations are associated with disease severity remains only partly characterized.A known limitation of proteomic studies of plasma samples is the large difference in the macromolecule abundance, with concentration spanning at least 10 orders of magnitude. To improve the coverage of plasma contents, we performed a deep proteomic analysis of plasma from 10 COVID-19 patients with severe/fatal pneumonia compared to 10 COVID-19 patients with pneumonia who did not require ICU admission (non-ICU). To this aim, plasma samples were first depleted of the most abundant proteins, trypsin digested and peptides subjected to a high pH reversed-phase peptide fractionation before LC-MS analysis.These results highlighted an increase of proteins involved in neutrophil and platelet activity and acute phase response, which is significantly higher in severe/fatal COVID-19 patients when compared to non-ICU ones. Importantly, these changes are associated with a selective induction of complement cascade factors in severe/fatal COVID-19 patients. Data are available via ProteomeXchange with identifier PXD036491. Among these alterations, we confirmed by ELISA that higher levels of the neutrophil granule proteins DEFA3 and LCN2 are present in COVID-19 patients requiring ICU admission when compared to non-ICU and healthy donors.Altogether, our study provided an in-depth view of plasma proteome changes that occur in COVID-19 patients in relation to disease severity, which can be helpful to identify therapeutic strategies to improve the disease outcome.

4.
Front Endocrinol (Lausanne) ; 13: 842575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370943

RESUMO

In pancreatic beta cells, mitochondrial metabolism controls glucose-stimulated insulin secretion (GSIS) by ATP production, redox signaling, and calcium (Ca2+) handling. Previously, we demonstrated that knockout mice for peroxiredoxin 6 (Prdx6-/- ), an antioxidant enzyme with both peroxidase and phospholipase A2 activity, develop a mild form of diabetes mellitus with a reduction in GSIS and in peripheral insulin sensitivity. However, whether the defect of GSIS present in these mice is directly modulated by Prdx6 is unknown. Therefore, the main goal of the present study was to evaluate if depletion of Prdx6 affects directly GSIS and pancreatic beta ß-cell function. Murine pancreatic ß-cell line (ßTC6) knockdown for Prdx6 (Prdx6KD) was employed, and insulin secretion, ATP, and intracellular Ca2+ content were assessed in response to glucose stimulation. Mitochondrial morphology and function were also evaluated through electron microscopy, and by testing mitochondrial membrane potential, oxygen consumption, and mitochondrial mass. Prdx6KD cells showed a significant reduction in GSIS as confirmed by decrease in both ATP release and Ca2+ influx. GSIS alteration was also demonstrated by a marked impairment of mitochondrial morphology and function. These latest are mainly linked to mitofusin downregulation, which are, in turn, strictly related to mitochondrial homeostasis (by regulating autophagy) and cell fate (by modulating apoptosis). Following a pro-inflammatory stimulus (typical of diabetic subjects), and in agreement with the deregulation of mitofusin steady-state levels, we also observed an enhancement in apoptotic death in Prdx6KD compared to control cells. We analyzed molecular mechanisms leading to apoptosis, and we further demonstrated that Prdx6 suppression activates both intrinsic and extrinsic apoptotic pathways, ultimately leading to caspase 3 and PARP-1 activation. In conclusion, Prdx6 is the first antioxidant enzyme, in pancreatic ß-cells, that by controlling mitochondrial homeostasis plays a pivotal role in GSIS modulation.


Assuntos
Células Secretoras de Insulina , Peroxirredoxina VI , Animais , Apoptose , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Dinâmica Mitocondrial , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismo
5.
Cells ; 11(7)2022 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-35406774

RESUMO

It is well known that secreted and exosomal proteins are associated with a broad range of physiological processes involving tissue homeostasis and differentiation. In the present paper, our purpose was to characterize the proteome of the culture medium in which the oocytes within the primordial/primary follicles underwent apoptosis induced by cisplatin (CIS) or were, for the most part, protected by LH against the drug. To this aim, prepubertal ovarian tissues were cultured under control and in the presence of CIS, LH, and CIS + LH. The culture media were harvested after 2, 12, and 24 h from chemotherapeutic drug treatment and analyzed by liquid chromatography-mass spectrometry (LC-MS). We found that apoptotic conditions generated by CIS in the cultured ovarian tissues and/or oocytes are reflected in distinct changes in the extracellular microenvironment in which they were cultured. These changes became evident mainly from 12 h onwards and were characterized by the inhibition or decreased release of a variety of compounds, such as the proteases Htra1 and Prss23, the antioxidants Prdx2 and Hbat1, the metabolic regulators Ldha and Pkm, and regulators of apoptotic pathways such as Tmsb4x. Altogether, these results confirm the biological relevance of the LH action on prepuberal ovaries and provide novel information about the proteins released by the ovarian tissues exposed to CIS and LH in the surrounding microenvironment. These data might represent a valuable resource for future studies aimed to clarify the effects and identify biomarkers of these compounds' action on the developing ovary.


Assuntos
Cisplatino , Folículo Ovariano , Animais , Apoptose , Cisplatino/metabolismo , Cisplatino/farmacologia , Feminino , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo
6.
Autophagy ; 18(8): 1752-1762, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34798798

RESUMO

PINK1 accumulation at the outer mitochondrial membrane (OMM) is a key event required to signal depolarized mitochondria to the autophagy machinery. How this early step is, in turn, modulated by autophagy proteins remains less characterized. Here, we show that, upon mitochondrial depolarization, the proautophagic protein AMBRA1 is recruited to the OMM and interacts with PINK1 and ATAD3A, a transmembrane protein that mediates mitochondrial import and degradation of PINK1. Downregulation of AMBRA1 expression results in reduced levels of PINK1 due to its enhanced degradation by the mitochondrial protease LONP1, which leads to a decrease in PINK1-mediated ubiquitin phosphorylation and mitochondrial PRKN/PARKIN recruitment. Notably, ATAD3A silencing rescues defective PINK1 accumulation in AMBRA1-deficient cells upon mitochondrial damage. Overall, our findings underline an upstream contribution of AMBRA1 in the control of PINK1-PRKN mitophagy by interacting with ATAD3A and promoting PINK1 stability. This novel regulatory element may account for changes of PINK1 levels in neuropathological conditions.Abbreviations: ACTB/ß-actin: actin beta; AMBRA1: autophagy and beclin 1 regulator 1; ATAD3A: ATPase family AAA domain containing 3A; BCL2L1/BCL-xL: BCL2 like 1; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; OMA1: OMA1 zinc metallopeptidase; OMM: outer mitochondrial membrane; PARL: presenilin associated rhomboid like; PARP: poly(ADP-ribose) polymerase; PD: Parkinson disease; PINK1: PTEN induced kinase 1; PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; SDHA: succinate dehydrogenase complex flavoprotein subunit A; TOMM70: translocase of outer mitochondrial membrane 70.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Mitofagia , Proteínas Quinases , Autofagia , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
7.
J Transl Med ; 19(1): 501, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876157

RESUMO

BACKGROUND: Omics data, driven by rapid advances in laboratory techniques, have been generated very quickly during the COVID-19 pandemic. Our aim is to use omics data to highlight the involvement of specific pathways, as well as that of cell types and organs, in the pathophysiology of COVID-19, and to highlight their links with clinical phenotypes of SARS-CoV-2 infection. METHODS: The analysis was based on the domain model, where for domain it is intended a conceptual repository, useful to summarize multiple biological pathways involved at different levels. The relevant domains considered in the analysis were: virus, pathways and phenotypes. An interdisciplinary expert working group was defined for each domain, to carry out an independent literature scoping review. RESULTS: The analysis revealed that dysregulated pathways of innate immune responses, (i.e., complement activation, inflammatory responses, neutrophil activation and degranulation, platelet degranulation) can affect COVID-19 progression and outcomes. These results are consistent with several clinical studies. CONCLUSIONS: Multi-omics approach may help to further investigate unknown aspects of the disease. However, the disease mechanisms are too complex to be explained by a single molecular signature and it is necessary to consider an integrated approach to identify hallmarks of severity.


Assuntos
COVID-19 , Humanos , Imunidade Inata , Pandemias , SARS-CoV-2
8.
BMC Cancer ; 21(1): 865, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34320944

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) is an aggressive disease with poor prognosis. A molecular classification based on mutational, methylation and transcriptomic features could allow identifying tailored therapies to improve CCA patient outcome. Proteomic remains partially unexplored; here, we analyzed the proteomic profile of five intrahepatic cholangiocarcinoma (ICC) derived from Italian patients undergone surgery and one normal bile duct cell line. METHODS: Proteome profile was investigated by using 2D electrophoresis followed by Mass Spectrometry (MS). To validate proteomic data, the expression of four overexpressed proteins (CAT, SOD, PRDX6, DBI/ACBP) was evaluated by immunohistochemistry in an independent cohort of formalin fixed, paraffin-embedded (FFPE) ICC tissues. We also compared proteomic data with those obtained by transcriptomic profile evaluated by microarray analysis of the same tissues. RESULTS: We identified 19 differentially expressed protein spots, which were further characterized by MS; 13 of them were up- and 6 were down-regulated in ICC. These proteins are mainly involved in redox processes (CAT, SODM, PRDX2, PRDX6), in metabolism (ACBP, ACY1, UCRI, FTCD, HCMS2), and cell structure and organization (TUB2, ACTB). CAT is overexpressed in 86% of patients, PRDX6 in 73%, SODM in 100%, and DBI/ACBP in 81% compared to normal adjacent tissues. A concordance of 50% between proteomic and transcriptomic data was observed. CONCLUSIONS: This study pointed out that the impairment of the metabolic and antioxidant systems, with a subsequent accumulation of free radicals, might be a key step in CCA development and progression.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Biomarcadores Tumorais , Colangiocarcinoma/metabolismo , Metabolismo Energético , Oxirredução , Proteoma , Proteômica , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Eletroforese em Gel Bidimensional , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Espectrometria de Massas/métodos , Proteômica/métodos
9.
Cells ; 10(5)2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069225

RESUMO

Autophagy is a lysosomal-dependent degradative mechanism essential in maintaining cellular homeostasis, but it is also considered an ancient form of innate eukaryotic fighting against invading microorganisms. Mounting evidence has shown that HIV-1 is a critical target of autophagy that plays a role in HIV-1 replication and disease progression. In a special subset of HIV-1-infected patients that spontaneously and durably maintain extremely low viral replication, namely, long-term nonprogressors (LTNP), the resistance to HIV-1-induced pathogenesis is accompanied, in vivo, by a significant increase in the autophagic activity in peripheral blood mononuclear cells. Recently, a new player in the battle of autophagy against HIV-1 has been identified, namely, tripartite motif protein 5α (TRIM5α). In vitro data demonstrated that TRIM5α directly recognizes HIV-1 and targets it for autophagic destruction, thus protecting cells against HIV-1 infection. In this paper, we analyzed the involvement of this factor in the control of HIV-1 infection through autophagy, in vivo, in LTNP. The results obtained showed significantly higher levels of TRIM5α expression in cells from LTNP with respect to HIV-1-infected normal progressor patients. Interestingly, the colocalization of TRIM5α and HIV-1 proteins in autophagic vacuoles in LTNP cells suggested the participation of TRIM5α in the autophagy containment of HIV-1 in LTNP. Altogether, our results point to a protective role of TRIM5α in the successful control of the chronic viral infection in HIV-1-controllers through the autophagy mechanism. In our opinion, these findings could be relevant in fighting against HIV-1 disease, because autophagy inducers might be employed in combination with antiretroviral drugs.


Assuntos
Infecções por HIV/imunologia , Sobreviventes de Longo Prazo ao HIV , Proteínas com Motivo Tripartido/imunologia , Ubiquitina-Proteína Ligases/imunologia , Replicação Viral , Adulto , Idoso , Fatores de Restrição Antivirais , Autofagia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , HIV-1 , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
J Immunol ; 206(10): 2420-2429, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33941660

RESUMO

We have recently shown that type 2 transglutaminase (TG2) plays a key role in the host's inflammatory response during bacterial infections. In this study, we investigated whether the enzyme is involved in the regulation of the STING pathway, which is the main signaling activated in the presence of both self- and pathogen DNA in the cytoplasm, leading to type I IFN (IFN I) production. In this study, we demonstrated that TG2 negatively regulates STING signaling by impairing IRF3 phosphorylation in bone marrow-derived macrophages, isolated from wild-type and TG2 knockout mice. In the absence of TG2, we found an increase in the IFN-ß production and in the downstream JAK/STAT pathway activation. Interestingly, proteomic analysis revealed that TG2 interacts with TBK1, affecting its interactome composition. Indeed, TG2 ablation facilitates the TBK1-IRF3 interaction, thus indicating that the enzyme plays a negative regulatory effect on IRF3 recruitment in the STING/TBK1 complex. In keeping with these findings, we observed an increase in the IFNß production in bronchoalveolar lavage fluids from COVID-19-positive dead patients paralleled by a dramatic decrease of the TG2 expression in the lung pneumocytes. Taken together, these results suggest that TG2 plays a negative regulation on the IFN-ß production associated with the innate immunity response to the cytosolic presence of both self- and pathogen DNA.


Assuntos
COVID-19/imunologia , Proteínas de Ligação ao GTP/imunologia , Imunidade Inata , Fator Regulador 3 de Interferon/imunologia , Proteínas de Membrana/imunologia , Proteínas Serina-Treonina Quinases/imunologia , SARS-CoV-2/imunologia , Transdução de Sinais/imunologia , Transglutaminases/imunologia , Animais , COVID-19/genética , COVID-19/patologia , Proteínas de Ligação ao GTP/genética , Humanos , Fator Regulador 3 de Interferon/genética , Interferon beta/genética , Interferon beta/imunologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteína 2 Glutamina gama-Glutamiltransferase , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Transglutaminases/genética
11.
Antiviral Res ; 190: 105064, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33781803

RESUMO

COVID-19 is currently a highly pressing health threat and therapeutic strategies to mitigate the infection impact are urgently needed. Characterization of the SARS-CoV-2 interactome in infected cells may represent a powerful tool to identify cellular proteins hijacked by viruses for their life cycle and develop host-oriented antiviral therapeutics. Here we report the proteomic characterization of host proteins interacting with SARS-CoV-2 Nucleoprotein in infected Vero E6 cells. We identified 24 high-confidence proteins mainly playing a role in RNA metabolism and translation, including RNA helicases and scaffold proteins involved in the formation of stress granules, cytoplasmic aggregates of messenger ribonucleoproteins that accumulate as a result of stress-induced translation arrest. Analysis of stress granules upon SARS-CoV-2 infection showed that these structures are not induced in infected cells, neither eIF2α phosphorylation, an upstream event leading to stress-induced translation inhibition. Notably, we found that G3BP1, a stress granule component that associates with the Nucleoprotein, is required for efficient SARS-CoV-2 replication. Moreover, we showed that the Nucleoprotein-interacting RNA helicase DDX3X colocalizes with viral RNA foci and its inhibition by small molecules or small interfering RNAs significantly reduces viral replication. Altogether, these results indicate that SARS-CoV-2 subverts the stress granule machinery and exploits G3BP1 and DDX3X for its replication cycle, offering groundwork for future development of host-directed therapies.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , COVID-19/metabolismo , RNA Helicases DEAD-box/metabolismo , Animais , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , DNA Helicases , Fator de Iniciação 2 em Eucariotos/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteômica/métodos , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , SARS-CoV-2/metabolismo , Células Vero , Replicação Viral/fisiologia
12.
Cell Death Dis ; 12(3): 249, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674551

RESUMO

TG2 is a multifunctional enzyme involved in several cellular processes and has emerging as a potential regulator of gene expression. In this regard, we have recently shown that TG2 is able to activate HSF1, the master transcriptional regulator of the stress-responsive genes; however, its effect on the overall gene expression remains unclear. To address this point, we analyzed, by RNA-seq, the effect of TG2 on the overall transcriptome as well as we characterized the TG2 interactome in the nucleus. The data obtained from these omics approaches reveal that TG2 markedly influences the overall cellular transcriptome profile and specifically the Wnt and HSF1 pathways. In particular, its ablation leads to a drastic downregulation of many key members of these pathways. Interestingly, we found that key components of the Wnt/ß-catenin pathway are also downregulated in cells lacking HSF1, thus confirming that TG2 regulates the HSF1 and this axis controls the Wnt signaling. Mechanistic studies revealed that TG2 can regulate the Wnt pathway by physically interacts with ß-catenin and its nuclear interactome includes several proteins known to be involved in the regulation of the Wnt signaling. In order to verify whether this effect is playing a role in vivo, we ablated TG2 in Danio rerio. Our data show that the zebrafish lacking TG2 cannot complete the development and their death is associated with an evident downregulation of the Wnt pathway and a defective heat-shock response. Our findings show for the first time that TG2 is essential for the correct embryonal development of lower vertebrates, and its action is mediated by the Wnt/HSF1 axis.


Assuntos
Fibroblastos/enzimologia , Proteínas de Ligação ao GTP/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Transglutaminases/metabolismo , Via de Sinalização Wnt , Peixe-Zebra/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 2 Glutamina gama-Glutamiltransferase , Transcrição Gênica , Transcriptoma , Transglutaminases/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
13.
Cell Death Dis ; 11(8): 656, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814759

RESUMO

The current epidemic of coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) calls for the development of inhibitors of viral replication. Here, we performed a bioinformatic analysis of published and purported SARS-CoV-2 antivirals including imatinib mesylate that we found to suppress SARS-CoV-2 replication on Vero E6 cells and that, according to the published literature on other coronaviruses is likely to act on-target, as a tyrosine kinase inhibitor. We identified a cluster of SARS-CoV-2 antivirals with characteristics of lysosomotropic agents, meaning that they are lipophilic weak bases capable of penetrating into cells. These agents include cepharentine, chloroquine, chlorpromazine, clemastine, cloperastine, emetine, hydroxychloroquine, haloperidol, ML240, PB28, ponatinib, siramesine, and zotatifin (eFT226) all of which are likely to inhibit SARS-CoV-2 replication by non-specific (off-target) effects, meaning that they probably do not act on their 'official' pharmacological targets, but rather interfere with viral replication through non-specific effects on acidophilic organelles including autophagosomes, endosomes, and lysosomes. Imatinib mesylate did not fall into this cluster. In conclusion, we propose a tentative classification of SARS-CoV-2 antivirals into specific (on-target) versus non-specific (off-target) agents based on their physicochemical characteristics.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Pneumonia Viral/metabolismo , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , COVID-19 , Morte Celular/efeitos dos fármacos , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Hidroxicloroquina/farmacologia , Mesilato de Imatinib/farmacologia , Lisossomos/efeitos dos fármacos , Pandemias , Pneumonia Viral/virologia , Inibidores de Proteínas Quinases/farmacologia , RNA Viral/efeitos dos fármacos , SARS-CoV-2 , Células Vero , Carga Viral/efeitos dos fármacos
14.
Front Cell Dev Biol ; 8: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117959

RESUMO

In the last years, proteomics has represented a valuable approach to elucidate key aspects in the regulation of type I/III interferons (IFNs) and autophagy, two main processes involved in the response to viral infection, to unveil the molecular strategies that viruses have evolved to counteract these processes. Besides their main metabolic roles, mitochondria are well recognized as pivotal organelles in controlling signaling pathways essential to restrain viral infections. In particular, a major role in antiviral defense is played by mitochondrial antiviral signaling (MAVS) protein, an adaptor protein that coordinates the activation of IFN inducing pathways and autophagy at the mitochondrial level. Here, we provide an overview of how mass spectrometry-based studies of protein-protein interactions and post-translational modifications (PTMs) have fostered our understanding of the molecular mechanisms that control the mitochondria-mediated antiviral immunity.

15.
Int J Med Microbiol ; 309(5): 299-306, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31147175

RESUMO

Interferon-γ inducible protein 10 (IP-10), is a potent chemoattractant that promotes migration of monocytes and activated T-cells to inflammation foci. IP-10 is elevated in serum of patients with chronic hepatitis C virus (HCV) and tuberculosis (TB) infections, although it remains to be determined the contribution of IP-10 in restricting Mycobacterium tuberculosis (Mtb) replication. Here, we investigated the impact of IP-10 on mycobacteria replication using the ex vivo model of human whole-blood (WB) assay. In particular, we compared the levels of IP-10 upon infection with different Mtb clinical strains and species of non-tuberculous mycobacteria (NTM) and evaluated how IP-10 may contain bacterial replication. Interestingly, we observed that the inhibition of the host enzyme dipeptidyl peptidase IV (DPP-IV), which inactivates IP-10 through cleavage of two amino acids at the chemokine N-terminus, restricted mycobacterial persistence in WB, supporting the critical role of full length IP-10 in mediating an anti-Mtb response. Addition of recombinant IP-10 expressed in eukaryotic cells enhanced the anti-mycobacterial activity in WB, although no differences were observed when IP-10 containing different proportions of cleaved and non-cleaved forms of the chemokine were added. Moreover, recombinant IP-10 did not exert a direct anti-mycobacterial effect. Our results underscore the clinical relevance of IP-10 in mycobacteria pathogenesis and support the potential outcomes that may derive by targeting the IP-10/CXCR3 pathway as host directed therapies for the treatment of Mtb or NTM infections.


Assuntos
Células Sanguíneas/microbiologia , Quimiocina CXCL10/imunologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Adulto , Bioensaio , Humanos , Masculino , Micobactérias não Tuberculosas/crescimento & desenvolvimento , Tuberculose/microbiologia , Células Tumorais Cultivadas
16.
Int J Infect Dis ; 78: 15-21, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30201505

RESUMO

OBJECTIVES: Biomarkers for tuberculosis (TB) diagnosis and clinical management are needed to defeat TB. In chronic hepatitis, patients not responding to interferon/ribavirin treatment had high levels of an antagonist form of IP-10. Recently, antagonist IP-10 has been shown to be involved also in TB pathogenesis. Here, we investigated IP-10 agonist/antagonist forms as potential inflammatory biomarkers to support TB diagnosis and monitoring. METHODS: Total IP-10 and its agonist/antagonist forms were measured by SIMOA digital ELISA in urine obtained from patients with active TB at baseline and after treatment. Healthy donors (HD) and patients with pneumonia were enrolled as controls. RESULTS: Patients with active TB had significantly higher levels of total and agonist IP-10 at baseline compared to HD; conversely, no differences were observed between IP-10 levels in active TB vs pneumonia. Moreover, in active TB a decline of total urine IP-10 was observed at therapy completion; agonist/antagonist forms reflected this decline although their differences were not statistically significant. CONCLUSIONS: We showed for the first time that agonist/antagonist IP-10 forms are measurable in urine. IP-10 levels associate with TB and pneumonia disease, suggesting their association with acute inflammation. Further studies are needed to assess their role to monitor TB treatment efficacy.


Assuntos
Biomarcadores/urina , Quimiocina CXCL10/urina , Pneumonia/urina , Tuberculose/urina , Adulto , Idoso , Antituberculosos/uso terapêutico , Estudos de Casos e Controles , Quimiocina CXCL10/química , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia/tratamento farmacológico , Tuberculose/tratamento farmacológico
17.
Hepatology ; 69(1): 34-50, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30070380

RESUMO

Hepatitis C virus (HCV) is highly efficient in establishing a chronic infection, having evolved multiple strategies to suppress the host antiviral responses. The HCV nonstructural 5A (NS5A) protein, in addition to its role in viral replication and assembly, has long been known to hamper the interferon (IFN) response. However, the mechanism of this inhibitory activity of NS5A remains partly characterized. In a functional proteomic screening carried out in HCV replicon cells, we identified the mitochondrial protein LRPPRC as an NS5A binding factor. Notably, we found that downregulation of LRPPRC expression results in a significant inhibition of HCV infection, which is associated with an increased activation of the IFN response. Moreover, we showed that LRPPRC acts as a negative regulator of the mitochondrial-mediated antiviral immunity, by interacting with mitochondrial antiviral signaling protein (MAVS) and inhibiting its association with TRAF3 and TRAF6. Finally, we demonstrated that NS5A is able to interfere with MAVS activity in a LRPPRC-dependent manner. Conclusion: Overall, our results indicate that NS5A contributes to the inhibition of innate immune pathways during HCV infection by exploiting the ability of LRPPRC to inhibit MAVS-regulated antiviral signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Hepatite C Crônica/virologia , Proteínas Mitocondriais/fisiologia , Proteínas de Neoplasias/fisiologia , Células Cultivadas , Hepacivirus/fisiologia , Humanos , Transdução de Sinais , Proteínas não Estruturais Virais/fisiologia
18.
Cell Rep ; 25(13): 3573-3581.e4, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30590033

RESUMO

Transglutaminase type 2 (TG2) is a multifunctional enzyme that plays a key role in mitochondria homeostasis under stressful cellular conditions. TG2 interactome analysis reveals an enzyme interaction with GRP75 (glucose-regulated protein 75). GRP75 localizes in mitochondria-associated membranes (MAMs) and acts as a bridging molecule between the two organelles by assembling the IP3R-GRP75-VDAC complex, which is involved in the transport of Ca2+ from the endoplasmic reticulum (ER) to mitochondria. We demonstrate that the TG2 and GRP75 interaction occurs in MAMs. The absence of the TG2-GRP75 interaction leads to an increase of the interaction between IP3R-3 and GRP75; a decrease of the number of ER-mitochondria contact sites; an impairment of the ER-mitochondrial Ca2+ flux; and an altered profile of the MAM proteome. These findings indicate TG2 is a key regulatory element of the MAMs.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Transglutaminases/metabolismo , Animais , Cálcio/metabolismo , Retículo Endoplasmático/ultraestrutura , Fibroblastos/metabolismo , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Ligação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase
19.
Dev Cell ; 47(5): 592-607.e6, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513302

RESUMO

Regulatory T cells (Treg) are necessary to maintain immunological tolerance and are key players in the control of autoimmune disease susceptibility. Expression of the transcription factor FOXP3 is essential for differentiation of Treg cells and indispensable for their suppressive function. However, there is still a lack of knowledge about the mechanisms underlying its regulation. Here, we demonstrate that pro-autophagy protein AMBRA1 is also a key modulator of T cells, regulating the complex network that leads to human Treg differentiation and maintenance. Indeed, through its ability to interact with the phosphatase PP2A, AMBRA1 promotes the stability of the transcriptional activator FOXO3, which, in turn, triggers FOXP3 transcription. Furthermore, we found that AMBRA1 plays a significant role in vivo by regulating Treg cell induction in mouse models of both tumor growth and multiple sclerosis, thus highlighting the role of AMBRA1 in the control of immune homeostasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular , Linfócitos T/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células HeLa , Homeostase , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Proteína Fosfatase 2/metabolismo , Linfócitos T/citologia
20.
Proteome Sci ; 15: 18, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28785172

RESUMO

BACKGROUND: Changes in iron metabolism frequently accompany HIV-1 infection. However, while many clinical and in vitro studies report iron overload exacerbates the development of infection, many others have found no correlation. Therefore, the multi-faceted role of iron in HIV-1 infection remains enigmatic. METHODS: RT-qPCR targeting the LTR region, gag, Tat and Rev were performed to measure the levels of viral RNAs in response to iron overload. Spike-in SILAC proteomics comparing i) iron-treated, ii) HIV-1-infected and iii) HIV-1-infected/iron treated T lymphocytes was performed to define modifications in the host cell proteome. Data from quantitative proteomics were integrated with the HIV-1 Human Interaction Database for assessing any viral cofactors modulated by iron overload in infected T lymphocytes. RESULTS: Here, we demonstrate that the iron overload down-regulates HIV-1 gene expression by decreasing the levels of viral RNAs. In addition, we found that iron overload modulates the expression of many viral cofactors. Among them, the downregulation of the REV cofactor eIF5A may correlate with the iron-induced inhibition of HIV-1 gene expression. Therefore, we demonstrated that eiF5A downregulation by shRNA resulted in a significant decrease of Nef levels, thus hampering HIV-1 replication. CONCLUSIONS: Our study indicates that HIV-1 cofactors influenced by iron metabolism represent potential targets for antiretroviral therapy and suggests eIF5A as a selective target for drug development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA