Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Res Sq ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559268

RESUMO

The X-linked A- variant (rs1050828, Val68Met) in G6PDX accounts for glucose-6-phosphate (G6PD) deficiency in approximately 11% of African American males. This common, hypomorphic variant may impact pulmonary host defense and phagocyte function during pneumonia by altering levels of reactive oxygen species produced by host leukocytes. We used CRISPR-Cas9 technology to generate novel mouse strain with "humanized" G6PD A- variant containing non-synonymous Val68Met single nucleotide polymorphism. Male hemizygous or littermate wild-type (WT) controls were inoculated intratracheally with K. pneumoniae (KP2 serotype, ATCC 43816 strain,103 CFU inoculum). We examined leukocyte recruitment, organ bacterial burden, bone marrow neutrophil and macrophage (BMDM) phagocytic capacity, and hydrogen peroxide (H2O2) production. Unexpectedly, G6PD-deficient mice showed decreased lung bacterial burden (p=0.05) compared to controls 24-h post-infection. Extrapulmonary dissemination and bacteremia were significantly reduced in G6PD-deficient mice 48-h post-infection. Bronchoalveolar lavage fluid (BALF) IL-10 levels were elevated in G6PD-deficient mice (p=0.03) compared to controls at 24-h but were lower at 48-h (p=0.03). G6PD A- BMDMs show mildly decreased in vitro phagocytosis of pHrodo-labeled KP2 (p=0.03). Baseline, but not stimulated, H2O2 production by G6PD A- neutrophils was greater compared to WT neutrophils. G6PD A- variant demonstrate higher basal neutrophil H2O2 production and are protected against acute Klebsiella intrapulmonary infection.

2.
Sci Signal ; 17(821): eadg2622, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289985

RESUMO

Targeted degradation regulates the activity of the transcriptional repressor Bcl6 and its ability to suppress oxidative stress and inflammation. Here, we report that abundance of endothelial Bcl6 is determined by its interaction with Golgi-localized pannexin 3 (Panx3) and that Bcl6 transcriptional activity protects against vascular oxidative stress. Consistent with data from obese, hypertensive humans, mice with an endothelial cell-specific deficiency in Panx3 had spontaneous systemic hypertension without obvious changes in channel function, as assessed by Ca2+ handling, ATP amounts, or Golgi luminal pH. Panx3 bound to Bcl6, and its absence reduced Bcl6 protein abundance, suggesting that the interaction with Panx3 stabilized Bcl6 by preventing its degradation. Panx3 deficiency was associated with increased expression of the gene encoding the H2O2-producing enzyme Nox4, which is normally repressed by Bcl6, resulting in H2O2-induced oxidative damage in the vasculature. Catalase rescued impaired vasodilation in mice lacking endothelial Panx3. Administration of a newly developed peptide to inhibit the Panx3-Bcl6 interaction recapitulated the increase in Nox4 expression and in blood pressure seen in mice with endothelial Panx3 deficiency. Panx3-Bcl6-Nox4 dysregulation occurred in obesity-related hypertension, but not when hypertension was induced in the absence of obesity. Our findings provide insight into a channel-independent role of Panx3 wherein its interaction with Bcl6 determines vascular oxidative state, particularly under the adverse conditions of obesity.


Assuntos
Hipertensão , Fatores de Transcrição , Animais , Humanos , Camundongos , Diferenciação Celular , Proliferação de Células/fisiologia , Conexinas/metabolismo , Peróxido de Hidrogênio/farmacologia , Obesidade , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Fatores de Transcrição/metabolismo
3.
Hypertension ; 81(4): 776-786, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240165

RESUMO

BACKGROUND: Aldosterone has been described to initiate cardiovascular diseases by triggering exacerbated sterile vascular inflammation. The functions of CCL5 (C-C motif chemokine ligand 5) and its receptor CCR5 (C-C motif chemokine receptor 5) are well known in infectious diseases, their contributions to aldosterone-induced vascular injury and hypertension remain unknown. METHODS: We analyzed the vascular profile, blood pressure, and renal damage in wild-type (CCR5+/+) and CCR5 knockout (CCR5-/-) mice treated with aldosterone (600 µg/kg per day for 14 days) while receiving 1% saline to drink. Vascular function was analyzed in aorta and mesenteric arteries, blood pressure was measured by telemetry and renal injury and inflammation were analyzed via histology and flow cytometry. Endothelial cells were used to study the molecular signaling whereby CCL5 induces endothelial dysfunction. RESULTS: Aldosterone treatment resulted in exaggerated CCL5 circulating levels and vascular CCR5 expression in CCR5+/+ mice accompanied by endothelial dysfunction, hypertension, and renal inflammation and damage. CCR5-/- mice were protected from these aldosterone-induced effects. Mechanistically, we demonstrated that CCL5 increased NOX1 (NADPH oxidase 1) expression, reactive oxygen species formation, NFκB (nuclear factor kappa B) activation, and inflammation and reduced NO production in isolated endothelial cells. These effects were abolished by antagonizing CCR5 with Maraviroc. Finally, aorta incubated with CCL5 displayed severe endothelial dysfunction, which is prevented by blocking NOX1, NFκB, or CCR5. CONCLUSIONS: Our data demonstrate that CCL5/CCR5, through activation of NFκB and NOX1, is critically involved in aldosterone-induced vascular and renal damage and hypertension placing CCL5 and CCR5 as potential therapeutic targets for conditions characterized by aldosterone excess.


Assuntos
Aldosterona , Quimiocina CCL5 , Hipertensão , Receptores CCR5 , Animais , Camundongos , Aldosterona/farmacologia , Células Endoteliais/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Inflamação , Receptores CCR5/genética , Receptores CCR5/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo
4.
J Med Chem ; 66(21): 14963-15005, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37857466

RESUMO

Nicotinamide adenine dinucleotide phosphate oxidase isoform 2 (NOX2) is an enzymatic complex whose function is the regulated generation of reactive oxygen species (ROS). NOX2 activity is central to redox signaling events and antibacterial response, but excessive ROS production by NOX2 leads to oxidative stress and inflammation in a range of diseases. The protein-protein interaction between the NOX2 subunits p47phox and p22phox is essential for NOX2 activation, thus p47phox is a potential drug target. Previously, we identified 2-aminoquinoline as a fragment hit toward p47phoxSH3A-B and converted it to a bivalent small-molecule p47phox-p22phox inhibitor (Ki = 20 µM). Here, we systematically optimized the bivalent compounds by exploring linker types and positioning as well as substituents on the 2-aminoquinoline part and characterized the bivalent binding mode with biophysical methods. We identified several compounds with submicromolar binding affinities and cellular activity and thereby demonstrated that p47phox can be targeted by potent small molecules.


Assuntos
NADPH Oxidases , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Aminoquinolinas
5.
bioRxiv ; 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37790434

RESUMO

Background: Aldosterone, a mineralocorticoid steroid hormone, has been described to initiate cardiovascular diseases by triggering exacerbated sterile vascular inflammation. The functions of C-C Motif Chemokine Ligand 5 (CCL5) and its receptor, C-C Motif Chemokine Receptor 5 (CCR5), are well known in infectious diseases, but their roles in the genesis of aldosterone-induced vascular injury and hypertension are unknown. Methods: We analyzed the vascular profile, blood pressure, and renal damage in wild-type (CCR5+/+) and CCR5 knockout (CCR5-/-) mice treated with aldosterone (600 µg/kg/day for 14 days) while receiving 1% saline to drink. Results: Here, we show that CCR5 plays a central role in aldosterone-induced vascular injury, hypertension, and renal damage. Long-term infusion of aldosterone in CCR5+/+ mice resulted in exaggerated CCL5 circulating levels and vascular CCR5 expression. Aldosterone treatment also triggered vascular injury, characterized by endothelial dysfunction and inflammation, hypertension, and renal damage. Mice lacking CCR5 were protected from aldosterone-induced vascular damage, hypertension, and renal injury. Mechanistically, we demonstrated that CCL5 increased NADPH oxidase 1 (Nox1) expression, reactive oxygen species (ROS) formation, NFκB activation, and inflammation and reduced nitric oxide production in isolated endothelial cells. These effects were abolished by antagonizing CCR5 with Maraviroc. Finally, aortae incubated with CCL5 displayed severe endothelial dysfunction, which is prevented by blocking Nox1, NFκB, or with Maraviroc treatment. Conclusions: Our data demonstrate that CCL5/CCR5, through activation of NFkB and Nox1, is critically involved in aldosterone-induced vascular and renal damage and hypertension. Our data place CCL5 and CCR5 as potential targets for therapeutic interventions in conditions with aldosterone excess.

6.
Arterioscler Thromb Vasc Biol ; 43(6): 889-906, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36891902

RESUMO

BACKGROUND: Peripheral ischemia caused by peripheral artery disease is associated with systemic inflammation, which may aggravate underlying comorbidities such as atherosclerosis and heart failure. However, the mechanisms of increased inflammation and inflammatory cell production in patients with peripheral artery disease remain poorly understood. METHODS: We used peripheral blood collected from patients with peripheral artery disease and performed hind limb ischemia (HI) in Apoe-/- mice fed a Western diet and C57BL/6J mice with a standard laboratory diet. Bulk and single-cell RNA sequencing analysis, whole-mount microscopy, and flow cytometry were performed to analyze hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and relocation. RESULTS: We observed augmented numbers of leukocytes in the blood of patients with peripheral artery disease and Apoe-/- mice with HI. RNA sequencing and whole-mount imaging of the bone marrow revealed HSPC migration into the vascular niche from the osteoblastic niche and their exaggerated proliferation and differentiation. Single-cell RNA sequencing demonstrated alterations in the genes responsible for inflammation, myeloid cell mobilization, and HSPC differentiation after HI. Heightened inflammation in Apoe-/- mice after HI aggravated atherosclerosis. Surprisingly, bone marrow HSPCs expressed higher amounts of the receptors for IL (interleukin)-1 and IL-3 after HI. Concomitantly, the promoters of Il1r1 and Il3rb had augmented H3K4me3 and H3K27ac marks after HI. Genetic and pharmacological inhibition of these receptors resulted in suppressed HSPC proliferation, reduced leukocyte production, and ameliorated atherosclerosis. CONCLUSIONS: Our findings demonstrate increased inflammation, HSPC abundance in the vascular niches of the bone marrow, and elevated IL-3Rb and IL-1R1 (IL-1 receptor 1) expression in HSPC following HI. Furthermore, the IL-3Rb and IL-1R1 signaling plays a pivotal role in HSPC proliferation, leukocyte abundance, and atherosclerosis aggravation after HI.


Assuntos
Aterosclerose , Doença Arterial Periférica , Animais , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Hematopoéticas/metabolismo , Aterosclerose/metabolismo , Inflamação/metabolismo , Isquemia/genética , Isquemia/metabolismo , Doença Arterial Periférica/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Epigênese Genética
7.
Neurobiol Dis ; 170: 105754, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35577065

RESUMO

Mitochondrial dysfunction and oxidative stress are strongly implicated in Parkinson's disease (PD) pathogenesis and there is evidence that mitochondrially-generated superoxide can activate NADPH oxidase 2 (NOX2). Although NOX2 has been examined in the context of PD, most attention has focused on glial NOX2, and the role of neuronal NOX2 in PD remains to be defined. Additionally, pharmacological NOX2 inhibitors have typically lacked specificity. Here we devised and validated a proximity ligation assay for NOX2 activity and demonstrated that in human PD and two animal models thereof, both neuronal and microglial NOX2 are highly active in substantia nigra under chronic conditions. However, in acute and sub-acute PD models, we observed neuronal, but not microglial NOX2 activation, suggesting that neuronal NOX2 may play a primary role in the early stages of the disease. Aberrant NOX2 activity is responsible for the formation of oxidative stress-related post-translational modifications of α-synuclein, and impaired mitochondrial protein import in vitro in primary ventral midbrain neuronal cultures and in vivo in nigrostriatal neurons in rats. In a rat model, administration of a brain-penetrant, highly specific NOX2 inhibitor prevented NOX2 activation in nigrostriatal neurons and its downstream effects in vivo, such as activation of leucine-rich repeat kinase 2 (LRRK2). We conclude that NOX2 is an important enzyme that contributes to progressive oxidative damage which in turn can lead to α-synuclein accumulation, mitochondrial protein import impairment, and LRRK2 activation. In this context, NOX2 inhibitors hold potential as a disease-modifying therapy in PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Neurônios Dopaminérgicos/metabolismo , Proteínas Mitocondriais/metabolismo , NADPH Oxidase 2/metabolismo , Doença de Parkinson/metabolismo , Ratos , alfa-Sinucleína/metabolismo
8.
Antioxidants (Basel) ; 12(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36670936

RESUMO

Pulmonary arterial hypertension (PAH) is a rare yet devastating and incurable disease with few treatment options. The underlying mechanisms of PAH appear to involve substantial cellular proliferation and vascular remodeling, causing right ventricular overload and eventual heart failure. Recent evidence suggests a significant seminal role of the pulmonary endothelium in the initiation and promotion of PAH. Our previous work identified elevated reactive oxygen species (ROS)-producing enzyme NADPH oxidase 1 (NOX1) in human pulmonary artery endothelial cells (HPAECs) of PAH patients promoting endothelial cell proliferation in vitro. In this study, we interrogated chemokine CXCL12's (aka SDF-1) role in EC proliferation under the control of NOX1 and specificity protein 1 (Sp1). We report here that NOX1 can drive hypoxia-induced endothelial CXCL12 expression via the transcription factor Sp1 leading to HPAEC proliferation and migration. Indeed, NOX1 drove hypoxia-induced Sp1 activation, along with an increased capacity of Sp1 to bind cognate promoter regions in the CXCL12 promoter. Sp1 activation induced elevated expression of CXCL12 in hypoxic HPAECs, supporting downstream induction of expression at the CXCL12 promoter via NOX1 activity. Pathological levels of CXCL12 mimicking those reported in human PAH patient serum restored EC proliferation impeded by specific NOX1 inhibitor. The translational relevance of our findings is highlighted by elevated NOX1 activity, Sp1 activation, and CXCL12 expression in explanted lung samples from PAH patients compared to non-PAH controls. Analysis of phosphofructokinase, glucose-6-phosphate dehydrogenase, and glutaminase activity revealed that CXCL12 induces glutamine and glucose metabolism, which are foundational to EC cell proliferation. Indeed, in explanted human PAH lungs, demonstrably higher glutaminase activity was detected compared to healthy controls. Finally, infusion of recombinant CXCL12 into healthy mice amplified pulmonary arterial pressure, right ventricle remodeling, and elevated glucose and glutamine metabolism. Together these data suggest a central role for a novel NOX1-Sp1-CXCL12 pathway in mediating PAH phenotype in the lung endothelium.

9.
Redox Biol ; 47: 102166, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34656824

RESUMO

NADPH oxidase 4 (NOX4) regulates endothelial inflammation by producing hydrogen peroxide (H2O2) and to a lesser extent O2•-. The ratio of NOX4-derived H2O2 and O2•- can be altered by coenzyme Q (CoQ) mimics. Therefore, we hypothesize that cytochrome b5 reductase 3 (CYB5R3), a CoQ reductase abundant in vascular endothelial cells, regulates inflammatory activation. To examine endothelial CYB5R3 in vivo, we created tamoxifen-inducible endothelium-specific Cyb5r3 knockout mice (R3 KO). Radiotelemetry measurements of systolic blood pressure showed systemic hypotension in lipopolysaccharides (LPS) challenged mice, which was exacerbated in R3 KO mice. Meanwhile, LPS treatment caused greater endothelial dysfunction in R3 KO mice, evaluated by acetylcholine-induced vasodilation in the isolated aorta, accompanied by elevated mRNA expression of vascular adhesion molecule 1 (Vcam-1). Similarly, in cultured human aortic endothelial cells (HAEC), LPS and tumor necrosis factor α (TNF-α) induced VCAM-1 protein expression was enhanced by Cyb5r3 siRNA, which was ablated by silencing the Nox4 gene simultaneously. Moreover, super-resolution confocal microscopy indicated mitochondrial co-localization of CYB5R3 and NOX4 in HAECs. APEX2-based electron microscopy and proximity biotinylation also demonstrated CYB5R3's localization on the mitochondrial outer membrane and its interaction with NOX4, which was further confirmed by the proximity ligation assay. Notably, Cyb5r3 knockdown HAECs showed less total H2O2 but more mitochondrial O2•-. Using inactive or non-membrane bound active CYB5R3, we found that CYB5R3 activity and membrane translocation are needed for optimal generation of H2O2 by NOX4. Lastly, cells lacking the CoQ synthesizing enzyme COQ6 showed decreased NOX4-derived H2O2, indicating a requirement for endogenous CoQ in NOX4 activity. In conclusion, CYB5R3 mitigates endothelial inflammatory activation by assisting in NOX4-dependent H2O2 generation via CoQ.


Assuntos
Citocromo-B(5) Redutase/metabolismo , Células Endoteliais , Peróxido de Hidrogênio , Animais , Células Cultivadas , Endotélio , Inflamação/genética , Camundongos , NADPH Oxidase 4/genética , NADPH Oxidases , Espécies Reativas de Oxigênio , Ubiquinona
10.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34654740

RESUMO

In an aging population, intense interest has shifted toward prolonging health span. Mounting evidence suggests that cellular reactive species are propagators of cell damage, inflammation, and cellular senescence. Thus, such species have emerged as putative provocateurs and targets for senolysis, and a clearer understanding of their molecular origin and regulation is of paramount importance. In an inquiry into signaling triggered by aging and proxy instigator, hyperglycemia, we show that NADPH Oxidase (NOX) drives cell DNA damage and alters nuclear envelope integrity, inflammation, tissue dysfunction, and cellular senescence in mice and humans with similar causality. Most notably, selective NOX1 inhibition rescues age-impaired blood flow and angiogenesis, vasodilation, and the endothelial cell wound response. Indeed, NOX1i delivery in vivo completely reversed age-impaired hind-limb blood flow and angiogenesis while disrupting a NOX1-IL-6 senescence-associated secretory phenotype (SASP) proinflammatory signaling loop. Relevant to its comorbidity with age, clinical samples from diabetic versus nondiabetic subjects reveal as operant this NOX1-mediated vascular senescence and inflammation in humans. On a mechanistic level, our findings support a previously unidentified role for IL-6 in this feedforward inflammatory loop and peroxisome proliferator-activated receptor gamma (PPARγ) down-regulation as inversely modulating p65-mediated NOX1 transcription. Targeting this previously unidentified NOX1-SASP signaling axis in aging is predicted to be an effective strategy for mitigating senescence in the vasculature and other organ systems.


Assuntos
Envelhecimento/fisiologia , Interleucina-6/metabolismo , NADPH Oxidases/metabolismo , Neovascularização Fisiológica/fisiologia , Fenótipo Secretor Associado à Senescência , Animais , Dano ao DNA , Técnicas de Silenciamento de Genes , Humanos , Hiperglicemia/metabolismo , Camundongos , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética
11.
Am J Physiol Heart Circ Physiol ; 321(3): H542-H557, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34296965

RESUMO

Pulmonary arterial hypertension (PAH) is a fatal cardiopulmonary disease characterized by increased vascular cell proliferation with apoptosis resistance and occlusive remodeling of the small pulmonary arteries. The Notch family of proteins subserves proximal signaling of an evolutionarily conserved pathway that effects cell proliferation, fate determination, and development. In endothelial cells (ECs), Notch receptor 2 (Notch2) was shown to promote endothelial apoptosis. However, a pro- or antiproliferative role for Notch2 in pulmonary endothelial proliferation and ensuing PAH is unknown. We postulated that suppressed Notch2 signaling drives pulmonary endothelial proliferation in the context of PAH. We observed that levels of Notch2 are ablated in lungs from PAH subjects compared with non-PAH controls. Notch2 expression was attenuated in human pulmonary artery endothelial cells (hPAECs) exposed to vasoactive stimuli including hypoxia, TGF-ß, ET-1, and IGF-1. Notch2-deficient hPAECs activated Akt, Erk1/2, and antiapoptotic protein Bcl-2 and reduced levels of p21cip and Bax associated with increased EC proliferation and reduced apoptosis. In addition, Notch2 suppression elicited a paradoxical activation of Notch1 and canonical Notch target gene Hes1, Hey1, and Hey2 transcription. Furthermore, reduction in Rb and increased E2F1 binding to the Notch1 promoter appear to explain the Notch1 upregulation. Yet, when Notch1 was decreased in Notch2-suppressed cells, the wound injury response was augmented. In aggregate, our results demonstrate that loss of Notch2 in hPAECs derepresses Notch1 and elicits EC hallmarks of PAH. Augmented EC proliferation upon Notch1 knockdown points to a context-dependent role for Notch1 and 2 in endothelial cell homeostasis.NEW & NOTEWORTHY This study demonstrates a previously unidentified role for Notch2 in the maintenance of lung vascular endothelial cell quiescence and pulmonary artery hypertension (PAH). A key novel finding is that Notch2 suppression activates Notch1 via Rb-E2F1-mediated signaling and induces proliferation and apoptosis resistance in human pulmonary artery endothelial cells. Notably, PAH patients show reduced levels of endothelial Notch2 in their pulmonary arteries, supporting Notch2 as a fundamental driver of PAH pathogenesis.


Assuntos
Proliferação de Células , Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Receptor Notch2/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Receptor Notch1/metabolismo , Receptor Notch2/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição HES-1/metabolismo
12.
Hypertension ; 77(2): 275-283, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33390049

RESUMO

NOXs (NADPH oxidases) comprise a family of proteins whose primary function is the production of reactive oxygen species, namely, superoxide anion and hydrogen peroxide. The prototype first being discovered and characterized in neutrophils, multiple NOXs are now known to be broadly expressed in cell and organ systems and whose phylogeny spans countless life forms beginning with prokaryotes. This long-enduring evolutionary conservation underscores the importance of fundamental NOX functions. This review chronicles a personal perspective of the field beginning with the discovery of NOXs in the vasculature and the advances achieved through the years as to our understanding of their mechanisms of action and role in oxidative stress and disease. Furthermore, applications of isoform-selective inhibitors to dissect the role of NOX isozymes in vascular biology, focusing on inflammation, pulmonary hypertension, and aging are described.


Assuntos
Endotélio Vascular/metabolismo , Hipertensão/metabolismo , NADPH Oxidases/metabolismo , Humanos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
13.
Antioxid Redox Signal ; 31(10): 687-709, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31250671

RESUMO

Significance: Highly prevalent in Western cultures, obesity, metabolic syndrome, and diabetes increase the risk of cardiovascular morbidity and mortality and cost health care systems billions of dollars annually. At the cellular level, obesity, metabolic syndrome, and diabetes are associated with increased production of reactive oxygen species (ROS). Increased levels of ROS production in key organ systems such as adipose tissue, skeletal muscle, and the vasculature cause disruption of tissue homeostasis, leading to increased morbidity and risk of mortality. More specifically, growing evidence implicates the nicotinamide adenine dinucleotide phosphate oxidase (NOX) enzymes in these pathologies through impairment of insulin signaling, inflammation, and vascular dysfunction. The NOX family of enzymes is a major driver of redox signaling through its production of superoxide anion, hydrogen peroxide, and attendant downstream metabolites acting on redox-sensitive signaling molecules. Recent Advances: The primary goal of this review is to highlight recent advances and survey our present understanding of cell-specific NOX enzyme contributions to metabolic diseases. Critical Issues: However, due to the short half-lives of individual ROS and/or cellular defense systems, radii of ROS diffusion are commonly short, often restricting redox signaling and oxidant stress to localized events. Thus, special emphasis should be placed on cell type and subcellular location of NOX enzymes to better understand their role in the pathophysiology of metabolic diseases. Future Directions: We discuss the targeting of NOX enzymes as potential therapy and bring to light potential emerging areas of NOX research, microparticles and epigenetics, in the context of metabolic disease.


Assuntos
Síndrome Metabólica/enzimologia , Síndrome Metabólica/metabolismo , NADPH Oxidases/metabolismo , Obesidade/enzimologia , Obesidade/metabolismo , Animais , Humanos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
14.
Methods Mol Biol ; 1982: 417-428, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31172486

RESUMO

A growing appreciation of NADPH oxidases (NOXs) as mediators of fundamental physiological processes and as important players in myriad diseases has led many laboratories on a search for specific inhibitors to help dissect the role in a given pathway or pathological condition. To date, there are only a few available inhibitors with a demonstrated specificity for a given isozyme. Among those, peptidic inhibitors have the advantage of being designed to target very specific protein-protein interactions that are essential for NOX activity. Herein, we provide the techniques to deliver these inhibitors both in cell culture as well as in vivo.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/química , Peptídeos/química , Peptídeos/farmacologia , Animais , Proteínas de Transporte , Linhagem Celular , Células Cultivadas , Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/administração & dosagem , Humanos , Modelos Biológicos , Peptídeos/administração & dosagem , Ligação Proteica , Mapeamento de Interação de Proteínas , Espécies Reativas de Oxigênio/metabolismo
15.
Diabetes ; 68(6): 1221-1229, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936145

RESUMO

Systemic hyperuricemia (HyUA) in obesity/type 2 diabetes facilitated by elevated activity of xanthine oxidoreductase (XOR), which is the sole source of uric acid (UA) in mammals, has been proposed to contribute to the pathogenesis of insulin resistance/dyslipidemia in obesity. Here, the effects of hepatocyte-specific ablation of Xdh, the gene encoding XOR (HXO), and whole-body pharmacologic inhibition of XOR (febuxostat) on obesity-induced insulin resistance/dyslipidemia were assessed. Deletion of hepatocyte Xdh substantially lowered liver and plasma UA concentration. When exposed to an obesogenic diet, HXO and control floxed (FLX) mice became equally obese, but systemic HyUA was absent in HXO mice. Despite this, obese HXO mice became as insulin resistant and dyslipidemic as obese FLX mice. Similarly, febuxostat dramatically lowered plasma and tissue UA and XOR activity in obese wild-type mice without altering obesity-associated insulin resistance/dyslipidemia. These data demonstrate that hepatocyte XOR activity is a critical determinant of systemic UA homeostasis, that deletion of hepatocyte Xdh is sufficient to prevent systemic HyUA of obesity, and that neither prevention nor correction of HyUA improves insulin resistance/dyslipidemia in obesity. Thus, systemic HyUA, although clearly a biomarker of the metabolic abnormalities of obesity, does not appear to be causative.


Assuntos
Glucose/metabolismo , Hepatócitos/metabolismo , Hiperuricemia/genética , Metabolismo dos Lipídeos , Obesidade/metabolismo , Ácido Úrico/metabolismo , Xantina Desidrogenase/genética , Animais , Dieta Hiperlipídica , Ácidos Graxos não Esterificados/metabolismo , Febuxostat/farmacologia , Teste de Tolerância a Glucose , Hepatócitos/efeitos dos fármacos , Hiperuricemia/metabolismo , Camundongos , Triglicerídeos/metabolismo , Xantina Desidrogenase/antagonistas & inibidores
16.
Haematologica ; 104(9): 1879-1891, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30679320

RESUMO

The regulation of platelets by oxidants is critical for vascular health and may explain thrombotic complications in diseases such as diabetes and dementia, but remains poorly understood. Here, we describe a novel technique combining electron paramagnetic resonance spectroscopy and turbidimetry, which has been utilized to monitor simultaneously platelet activation and oxygen radical generation. This technique has been used to investigate the redox-dependence of human and mouse platelets. Using selective peptide inhibitors of NADPH oxidases (NOXs) on human platelets and genetically modified mouse platelets (NOX1-/- or NOX2-/-), we discovered that: 1) intracellular but not extracellular superoxide anion generated by NOX is critical for platelet activation by collagen; 2) superoxide dismutation to hydrogen peroxide is required for thrombin-dependent activation; 3) NOX1 is the main source of oxygen radicals in response to collagen, while NOX2 is critical for activation by thrombin; 4) two platelet modulators, namely oxidized low density lipoproteins (oxLDL) and amyloid peptide ß (Aß), require activation of both NOX1 and NOX2 to pre-activate platelets. This study provides new insights into the redox dependence of platelet activation. It suggests the possibility of selectively inhibiting platelet agonists by targeting either NOX1 (for collagen) or NOX2 (for thrombin). Selective inhibition of either NOX1 or NOX2 impairs the potentiatory effect of tested platelet modulators (oxLDL and Aß), but does not completely abolish platelet hemostatic function. This information offers new opportunities for the development of disease-specific antiplatelet drugs with limited bleeding side effects by selectively targeting one NOX isoenzyme.


Assuntos
Técnicas de Química Combinatória , Oxirredução , Ativação Plaquetária/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Ânions , Plaquetas/metabolismo , Colágeno/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Transgênicos , NADPH Oxidase 1/genética , NADPH Oxidase 2/genética , NADPH Oxidases/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Superóxidos/metabolismo , Trombose/patologia
17.
Redox Biol ; 17: 259-273, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29747066

RESUMO

Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/∆ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/∆ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/∆ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/∆ mice never exceeded that observed in old WT mice. Surprisingly, levels of reactive oxygen species (ROS) were increased in tissues of Ercc1-/∆ mice to an extent identical to naturally-aged WT mice. Increased enzymatic production of ROS and decreased antioxidants contributed to the elevation in oxidative stress in both Ercc1-/∆ and aged WT mice. Chronic treatment of Ercc1-/∆ mice with the mitochondrial-targeted radical scavenger XJB-5-131 attenuated oxidative DNA damage, senescence and age-related pathology. Our findings indicate that nuclear genotoxic stress arises, at least in part, due to mitochondrial-derived ROS, and this spontaneous DNA damage is sufficient to drive increased levels of ROS, cellular senescence, and the consequent age-related physiological decline.


Assuntos
Envelhecimento/genética , Senescência Celular/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Mitocôndrias/genética , Animais , Antioxidantes/metabolismo , Senescência Celular/fisiologia , Óxidos N-Cíclicos/farmacologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo
18.
Sci Signal ; 10(501)2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042481

RESUMO

Senescent cells withdraw from the cell cycle and do not proliferate. The prevalence of senescent compared to normally functioning parenchymal cells increases with age, impairing tissue and organ homeostasis. A contentious principle governing this process has been the redox theory of aging. We linked matricellular protein thrombospondin 1 (TSP1) and its receptor CD47 to the activation of NADPH oxidase 1 (Nox1), but not of the other closely related Nox isoforms, and associated oxidative stress, and to senescence in human cells and aged tissue. In human endothelial cells, TSP1 promoted senescence and attenuated cell cycle progression and proliferation. At the molecular level, TSP1 increased Nox1-dependent generation of reactive oxygen species (ROS), leading to the increased abundance of the transcription factor p53. p53 mediated a DNA damage response that led to senescence through Rb and p21cip, both of which inhibit cell cycle progression. Nox1 inhibition blocked the ability of TSP1 to increase p53 nuclear localization and p21cip abundance and its ability to promote senescence. Mice lacking TSP1 showed decreases in ROS production, p21cip expression, p53 activity, and aging-induced senescence. Conversely, lung tissue from aging humans displayed increases in the abundance of vascular TSP1, Nox1, p53, and p21cip Finally, genetic ablation or pharmacological blockade of Nox1 in human endothelial cells attenuated TSP1-mediated ROS generation, restored cell cycle progression, and protected against senescence. Together, our results provide insights into the functional interplay between TSP1 and Nox1 in the regulation of endothelial senescence and suggest potential targets for controlling the aging process at the molecular level.


Assuntos
Antígeno CD47/genética , Senescência Celular/genética , Células Endoteliais/metabolismo , NADPH Oxidase 1/genética , Trombospondina 1/genética , Adulto , Idoso , Envelhecimento/genética , Animais , Antígeno CD47/metabolismo , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , NADPH Oxidase 1/metabolismo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Trombospondina 1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
19.
PLoS One ; 11(5): e0153780, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27144530

RESUMO

BACKGROUND: Vascular hyperproliferative disorders are characterized by excessive smooth muscle cell (SMC) proliferation leading to vessel remodeling and occlusion. In pulmonary arterial hypertension (PAH), SMC phenotype switching from a terminally differentiated contractile to synthetic state is gaining traction as our understanding of the disease progression improves. While maintenance of SMC contractile phenotype is reportedly orchestrated by a MEF2C-myocardin (MYOCD) interplay, little is known regarding molecular control at this nexus. Moreover, the burgeoning interest in microRNAs (miRs) provides the basis for exploring their modulation of MEF2C-MYOCD signaling, and in turn, a pro-proliferative, synthetic SMC phenotype. We hypothesized that suppression of SMC contractile phenotype in pulmonary hypertension is mediated by miR-214 via repression of the MEF2C-MYOCD-leiomodin1 (LMOD1) signaling axis. METHODS AND RESULTS: In SMCs isolated from a PAH patient cohort and commercially obtained hPASMCs exposed to hypoxia, miR-214 expression was monitored by qRT-PCR. miR-214 was upregulated in PAH- vs. control subject hPASMCs as well as in commercially obtained hPASMCs exposed to hypoxia. These increases in miR-214 were paralleled by MEF2C, MYOCD and SMC contractile protein downregulation. Of these, LMOD1 and MEF2C were directly targeted by the miR. Mir-214 overexpression mimicked the PAH profile, downregulating MEF2C and LMOD1. AntagomiR-214 abrogated hypoxia-induced suppression of the contractile phenotype and its attendant proliferation. Anti-miR-214 also restored PAH-PASMCs to a contractile phenotype seen during vascular homeostasis. CONCLUSIONS: Our findings illustrate a key role for miR-214 in modulation of MEF2C-MYOCD-LMOD1 signaling and suggest that an antagonist of miR-214 could mitigate SMC phenotype changes and proliferation in vascular hyperproliferative disorders including PAH.


Assuntos
Autoantígenos/metabolismo , Proteínas do Citoesqueleto/metabolismo , Hipertensão Pulmonar/metabolismo , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , Artéria Pulmonar/metabolismo , Transativadores/metabolismo , Antagomirs/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Regulação para Baixo/fisiologia , Hipertensão Pulmonar Primária Familiar/metabolismo , Células HEK293 , Humanos , Fatores de Transcrição MEF2/metabolismo , Contração Muscular/fisiologia , Músculo Liso Vascular/metabolismo , Fenótipo , Regulação para Cima/fisiologia
20.
Antioxid Redox Signal ; 20(17): 2741-54, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24070014

RESUMO

SIGNIFICANCE: Numerous studies in animal models and human subjects corroborate that elevated levels of reactive oxygen species (ROS) play a pivotal role in the progression of multiple diseases. As a major source of ROS in many organ systems, the NADPH oxidase (Nox) has become a prime target for therapeutic development. RECENT ADVANCES: In recent years, intense efforts have been dedicated to the development of pan- and isoform-specific Nox inhibitors as opposed to antioxidants that proved ineffective in clinical trials. Over the past decade, an array of compounds has been proposed in an attempt to fill this void. CRITICAL ISSUES: Although many of these compounds have proven effective as Nox enzyme family inhibitors, isoform specificity has posed a formidable challenge to the scientific community. This review surveys the most prominent Nox inhibitors, and discusses potential isoform specificity, known mechanisms of action, and shortcomings. Some of these inhibitors hold substantial promise as targeted therapeutics. FUTURE DIRECTIONS: Increased insight into the mechanisms of action and regulation of this family of enzymes as well as atomic structures of key Nox subunits are expected to give way to a broader spectrum of more potent, efficacious, and specific molecules. These lead molecules will assuredly serve as a basis for drug development aimed at treating a wide array of diseases associated with increased Nox activity.


Assuntos
Doenças Cardiovasculares/genética , NADPH Oxidases/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/terapia , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Humanos , NADPH Oxidases/antagonistas & inibidores , Isoformas de Proteínas/efeitos dos fármacos , Isoformas de Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA