Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 236: 107550, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086584

RESUMO

BACKGROUND: Explainable artificial intelligence (XAI) is a technology that can enhance trust in mental state classifications by providing explanations for the reasoning behind artificial intelligence (AI) models outputs, especially for high-dimensional and highly-correlated brain signals. Feature importance and counterfactual explanations are two common approaches to generate these explanations, but both have drawbacks. While feature importance methods, such as shapley additive explanations (SHAP), can be computationally expensive and sensitive to feature correlation, counterfactual explanations only explain a single outcome instead of the entire model. METHODS: To overcome these limitations, we propose a new procedure for computing global feature importance that involves aggregating local counterfactual explanations. This approach is specifically tailored to fMRI signals and is based on the hypothesis that instances close to the decision boundary and their counterfactuals mainly differ in the features identified as most important for the downstream classification task. We refer to this proposed feature importance measure as Boundary Crossing Solo Ratio (BoCSoR), since it quantifies the frequency with which a change in each feature in isolation leads to a change in classification outcome, i.e., the crossing of the model's decision boundary. RESULTS AND CONCLUSIONS: Experimental results on synthetic data and real publicly available fMRI data from the Human Connect project show that the proposed BoCSoR measure is more robust to feature correlation and less computationally expensive than state-of-the-art methods. Additionally, it is equally effective in providing an explanation for the behavior of any AI model for brain signals. These properties are crucial for medical decision support systems, where many different features are often extracted from the same physiological measures and a gold standard is absent. Consequently, computing feature importance may become computationally expensive, and there may be a high probability of mutual correlation among features, leading to unreliable results from state-of-the-art XAI methods.


Assuntos
Inteligência Artificial , Encéfalo , Humanos , Encéfalo/diagnóstico por imagem , Tecnologia
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5983-5986, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892481

RESUMO

Brain-Computer Interfaces (BCI) provide effective tools aimed at recognizing different brain activities, translate them into actions, and enable humans to directly communicate through them. In this context, the need for strong recognition performances results in increasingly sophisticated machine learning (ML) techniques, which may result in poor performance in a real application (e.g., limiting a real-time implementation). Here, we propose an ensemble approach to effectively balance between ML performance and computational costs in a BCI framework. The proposed model builds a classifier by combining different ML models (base-models) that are specialized to different classification sub-problems. More specifically, we employ this strategy with an ensemble-based architecture consisting of multi-layer perceptrons, and test its performance on a publicly available electroencephalography-based BCI dataset with four-class motor imagery tasks. Compared to previously proposed models tested on the same dataset, the proposed approach provides greater average classification performances and lower inter-subject variability.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Eletroencefalografia , Humanos , Imagens, Psicoterapia , Redes Neurais de Computação
3.
Sensors (Basel) ; 18(11)2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405020

RESUMO

Wearable sensors may enable the continuous monitoring of gait out of the clinic without requiring supervised tests and costly equipment. This paper investigates the use of a single wearable accelerometer to detect foot contact times and estimate temporal gait parameters (stride time, swing and stance duration). The experiments considered two possible body positions for the accelerometer: over the lower trunk and inside a trouser pocket. The latter approach could be implemented using a common smartphone. Notably, during the experiments, the ground truth was obtained by using a pair of sensorized shoes. Unlike ambient sensors and camera-based systems, sensorized shoes enable the evaluation of body-worn sensors even during longer walks. Experiments showed that both trunk and pocket positions achieved promising results in estimating gait parameters, with a mean absolute error below 50 ms.


Assuntos
Acelerometria/instrumentação , Fenômenos Biomecânicos/fisiologia , Pé/fisiologia , Smartphone , Algoritmos , Marcha/fisiologia , Humanos
4.
Sensors (Basel) ; 18(7)2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30004417

RESUMO

In settings wherein discussion topics are not statically assigned, such as in microblogs, a need exists for identifying and separating topics of a given event. We approach the problem by using a novel type of similarity, calculated between the major terms used in posts. The occurrences of such terms are periodically sampled from the posts stream. The generated temporal series are processed by using marker-based stigmergy, i.e., a biologically-inspired mechanism performing scalar and temporal information aggregation. More precisely, each sample of the series generates a functional structure, called mark, associated with some concentration. The concentrations disperse in a scalar space and evaporate over time. Multiple deposits, when samples are close in terms of instants of time and values, aggregate in a trail and then persist longer than an isolated mark. To measure similarity between time series, the Jaccard's similarity coefficient between trails is calculated. Discussion topics are generated by such similarity measure in a clustering process using Self-Organizing Maps, and are represented via a colored term cloud. Structural parameters are correctly tuned via an adaptation mechanism based on Differential Evolution. Experiments are completed for a real-world scenario, and the resulting similarity is compared with Dynamic Time Warping (DTW) similarity.


Assuntos
Blogging , Análise por Conglomerados , Mídias Sociais , Algoritmos , Biomimética
5.
Springerplus ; 5: 43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26811805

RESUMO

The advent of online social networks (OSNs) paired with the ubiquitous proliferation of smartphones have enabled social sensing systems. In the last few years, the aptitude of humans to spontaneously collect and timely share context information has been exploited for emergency detection and crisis management. Apart from event-specific features, these systems share technical approaches and architectural solutions to address the issues with capturing, filtering and extracting meaningful information from data posted to OSNs by networks of human sensors. This paper proposes a conceptual and architectural framework for the design of emergency detection systems based on the "human as a sensor" (HaaS) paradigm. An ontology for the HaaS paradigm in the context of emergency detection is defined. Then, a modular architecture, independent of a specific emergency type, is designed. The proposed architecture is demonstrated by an implemented application for detecting earthquakes via Twitter. Validation and experimental results based on messages posted during earthquakes occurred in Italy are reported.

6.
Sensors (Basel) ; 13(9): 12218-43, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24036582

RESUMO

A crucial aspect in rowing is having a synchronized, highly-efficient stroke. This is very difficult to obtain, due to the many interacting factors that each rower of the crew must perceive. Having a system that monitors and represents the crew coordination would be of great help to the coach during training sessions. In the literature, some methods already employ wireless sensors for capturing motion patterns that affect rowing performance. A challenging problem is to support the coach's decisions at his same level of knowledge, using a limited number of sensors and avoiding the complexity of the biomechanical analysis of human movements. In this paper, we present a multi-agent information-processing system for on-water measuring of both the overall crew asynchrony and the individual rower asynchrony towards the crew. More specifically, in the system, the first level of processing is managed by marking agents, which release marks in a sensing space, according to the rowers' motion. The accumulation of marks enables a stigmergic cooperation mechanism, generating collective marks, i.e., short-term memory structures in the sensing space. At the second level of processing, information provided by marks is observed by similarity agents, which associate a similarity degree with respect to optimal marks. Finally, the third level is managed by granulation agents, which extract asynchrony indicators for different purposes. The effectiveness of the system has been experimented on real-world scenarios. The study includes the problem statement and its characterization in the literature, as well as the proposed solving approach and initial experimental setting.


Assuntos
Algoritmos , Inteligência Artificial , Desempenho Atlético/fisiologia , Monitorização Ambulatorial/métodos , Movimento/fisiologia , Navios , Análise e Desempenho de Tarefas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA