Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Epigenetics ; 15(1): 197, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129913

RESUMO

BACKGROUND: Lysine demethylase enzymes (KDMs) are an emerging class of therapeutic targets, that catalyse the removal of methyl marks from histone lysine residues regulating chromatin structure and gene expression. KDM4A isoform plays an important role in the epigenetic dysregulation in various cancers and is linked to aggressive disease and poor clinical outcomes. Despite several efforts, the KDM4 family lacks successful specific molecular inhibitors. RESULTS: Herein, starting from a structure-based fragments virtual screening campaign we developed a synergic framework as a guide to rationally design efficient KDM4A inhibitors. Commercial libraries were used to create a fragments collection and perform a virtual screening campaign combining docking and pharmacophore approaches. The most promising compounds were tested in-vitro by a Homogeneous Time-Resolved Fluorescence-based assay developed for identifying selective substrate-competitive inhibitors by means of inhibition of H3K9me3 peptide demethylation. 2-(methylcarbamoyl)isonicotinic acid was identified as a preliminary active fragment, displaying inhibition of KDM4A enzymatic activity. Its chemical exploration was deeply investigated by computational and experimental approaches which allowed a rational fragment growing process. The in-silico studies guided the development of derivatives designed as expansion of the primary fragment hit and provided further knowledge on the structure-activity relationship. CONCLUSIONS: Our study describes useful insights into key ligand-KDM4A protein interaction and provides structural features for the development of successful selective KDM4A inhibitors.


Assuntos
Histona Desmetilases com o Domínio Jumonji , Lisina , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo , Metilação de DNA , Histonas/metabolismo , Relação Estrutura-Atividade
2.
Cell Death Dis ; 14(11): 773, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007509

RESUMO

Cigarette smoking impairs the lung innate immune response making smokers more susceptible to infections and severe symptoms. Dysregulation of cell death is emerging as a key player in chronic inflammatory conditions. We have recently reported that short exposure of human monocyte-derived macrophages (hMDMs) to cigarette smoke extract (CSE) altered the TLR4-dependent response to lipopolysaccharide (LPS). CSE caused inhibition of the MyD88-dependent inflammatory response and activation of TRIF/caspase-8/caspase-1 pathway leading to Gasdermin D (GSDMD) cleavage and increased cell permeability. Herein, we tested the hypothesis that activation of caspase-8 by CSE increased pro-inflammatory cell death of LPS-stimulated macrophages. To this purpose, we measured apoptotic and pyroptotic markers as well as the expression/release of pro-inflammatory mediators in hMDMs exposed to LPS and CSE, alone or in combination, for 6 and 24 h. We show that LPS/CSE-treated hMDMs, but not cells treated with CSE or LPS alone, underwent lytic cell death (LDH release) and displayed apoptotic features (activation of caspase-8 and -3/7, nuclear condensation, and mitochondrial membrane depolarization). Moreover, the negative regulator of caspase-8, coded by CFLAR gene, was downregulated by CSE. Activation of caspase-3 led to Gasdermin E (GSDME) cleavage. Notably, lytic cell death caused the release of the damage-associated molecular patterns (DAMPs) heat shock protein-60 (HSP60) and S100A8/A9. This was accompanied by an impaired inflammatory response resulting in inhibited and delayed release of IL6 and TNF. Of note, increased cleaved caspase-3, higher levels of GSDME and altered expression of cell death-associated genes were found in alveolar macrophages of smoker subjects compared to non-smoking controls. Overall, our findings show that CSE sensitizes human macrophages to cell death by promoting pyroptotic and apoptotic pathways upon encountering LPS. We propose that while the delayed inflammatory response may result in ineffective defenses against infections, the observed cell death associated with DAMP release may contribute to establish chronic inflammation. CS exposure sensitizes human macrophages to pro-inflammatory cell death. Upon exposure to LPS, CS inhibits the TLR4/MyD88 inflammatory response, downregulating the pro-inflammatory genes TNF and IL6 and the anti-apoptotic gene CFLAR, known to counteract caspase-8 activity. CS enhances caspase-8 activation through TLR4/TRIF, with a partial involvement of RIPK1, resulting on the activation of caspase-1/GSDMD axis leading to increased cell permeability and DAMP release through gasdermin pores [19]. At later timepoints caspase-3 becomes strongly activated by caspase-8 triggering apoptotic events which are associated with mitochondrial membrane depolarization, gasdermin E cleavage and secondary necrosis with consequent massive DAMP release.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Humanos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Morte Celular , Gasderminas , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Nicotiana/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
3.
Molecules ; 28(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37110656

RESUMO

The use of human Mesenchymal Stem Cells (hMSC) as therapeutic agents for advanced clinical therapies relies on their in vitro expansion. Over the last years, several efforts have been made to optimize hMSC culture protocols, namely by mimicking the cell physiological microenvironment, which strongly relies on signals provided by the extracellular matrix (ECM). ECM glycosaminoglycans, such as heparan-sulfate, sequester adhesive proteins and soluble growth factors at the cell membrane, orchestrating signaling pathways that control cell proliferation. Surfaces exposing the synthetic polypeptide poly(L-lysine, L-leucine) (pKL) have previously been shown to bind heparin from human plasma in a selective and concentration-dependent manner. To evaluate its effect on hMSC expansion, pKL was immobilized onto self-assembled monolayers (SAMs). The pKL-SAMs were able to bind heparin, fibronectin and other serum proteins, as demonstrated by quartz crystal microbalance with dissipation (QCM-D) studies. hMSC adhesion and proliferation were significantly increased in pKL-SAMs compared to controls, most probably related to increased heparin and fibronectin binding to pKL surfaces. This proof-of-concept study highlights the potential of pKL surfaces to improve hMSC in vitro expansion possible through selective heparin/serum protein binding at the cell-material interface.


Assuntos
Fibronectinas , Peptídeos , Humanos , Comunicação Celular , Heparina/farmacologia , Heparina/química , Proliferação de Células
4.
FASEB J ; 36(9): e22525, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36004615

RESUMO

Mechanisms and consequences of gasdermin D (GSDMD) activation in cigarette smoke (CS)-associated inflammation and lung disease are unknown. GSDMD is a downstream effector of caspase-1, -8, and -4. Upon cleavage, GSDMD generates pores into cell membranes. Different degrees of GSDMD activation are associated with a range of physiological outputs ranging from cell hyperactivation to pyroptosis. We have previously reported that in human monocyte-derived macrophages CS extract (CSE) inhibits the NLRP3 inflammasome and shifts the response to lipopolysaccharide (LPS) towards the TLR4-TRIF axis leading to activation of caspase-8, which, in turn, activates caspase-1. In the present work, we investigated whether other ASC-dependent inflammasomes could be involved in caspase activation by CSE and whether caspase activation led to GSDMD cleavage and other downstream effects. Presented results demonstrate that CSE promoted ASC-independent activation of caspase-1 leading to GSDMD cleavage and increased cell permeability, in the absence of cell death. GSDMD cleavage was strongly enhanced upon stimulation with LPS+CSE, suggesting a synergistic effect between the two stimuli. Noteworthy, CSE promoted LPS internalization leading to caspase-4 activation, thus contributing to increased GSDMD cleavage. Caspase-dependent GSDMD cleavage was associated with mitochondrial superoxide generation. Increased cleaved GSDMD was found in lung macrophages of smokers compared to ex-smokers and non-smoking controls. Our findings revealed that ASC-independent activation of caspase-1, -4, and -8 and GSDMD cleavage upon exposure to CS may contribute to macrophage dysfunction and feed the chronic inflammation observed in the smokers' lung.


Assuntos
Caspases Iniciadoras/metabolismo , Fumar Cigarros , Inflamassomos , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Caspase 1/metabolismo , Caspases/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nicotiana/metabolismo
5.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560261

RESUMO

The NLRP3 inflammasome is a multi-protein complex that initiates innate immunity responses when exposed to a wide range of stimuli, including pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Inflammasome activation leads to the release of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-18 and to pyroptotic cell death. Over-activation of NLRP3 inflammasome has been associated with several chronic inflammatory diseases. A deep knowledge of NLRP3 inflammasome biology is required to better exploit its potential as therapeutic target and for the development of new selective drugs. To this purpose, in the past few years, several tools have been developed for the biological characterization of the multimeric inflammasome complex, the identification of the upstream signaling cascade leading to inflammasome activation, and the downstream effects triggered by NLRP3 activation. In this review, we will report cellular models and cellular, biochemical, and biophysical assays that are currently available for studying inflammasome biology. A special focus will be on those models/assays that have been used to identify NLRP3 inhibitors and their mechanism of action.


Assuntos
Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Alarminas/metabolismo , Animais , Humanos , Imunidade Inata , Modelos Biológicos , Moléculas com Motivos Associados a Patógenos/metabolismo , Piroptose , Transdução de Sinais
6.
Colloids Surf B Biointerfaces ; 189: 110836, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32066089

RESUMO

Human mesenchymal stem/stromal cells (hMSC) are promising therapeutic agents for regenerative medicine. However, therapeutic doses necessary for clinical application require in vitro expansion, ideally under Xeno-Free (XF) conditions to avoid the use of foetal bovine serum (FBS). We previously reported that hMSCs could be expanded using a pharmaceutical-grade human plasma-derived supplement for cell culture (SCC, Plastem®) combined with bFGF and TGFß1, on fibronectin (Fn)-coated surfaces. hMSCs expansion may also be affected by the chemistry of the culture surface, which modulates protein adsorption at the cell-material interface and, consequently, cell behavior. This work aimed to evaluate the effect of surface chemistry on hMSCs behavior in SCC-based XF media. For that, self-assembled monolayers (SAMs) with hydrophobic (-CH3) and hydrophilic (neutral -OH, positively charged -NH3+ and negatively charged -COO-) groups were used as model surfaces. Under XF conditions, Fn coating showed to be necessary to improve hMSC adhesion (4 h) onto all surfaces, except for OH-SAMs, probably due to a low protein adsorption capacity characteristic of this surface. In terms of cell metabolic activity (5 days) on Fn-coated surfaces, an increase over time under XF conditions was observed in all SAMs except in CH3-SAMs, which can be attributed to strong and irreversible protein adsorption characteristic of hydrophobic surfaces. This trend was also observed under FBS conditions. Nevertheless, none of the surfaces improved hMSC metabolic activity, as compared with tissue-cultured surfaces. Overall, this work describes the role of surface chemistry in XF hMSC expansion.


Assuntos
Células-Tronco Mesenquimais/citologia , Adulto , Proliferação de Células , Células Cultivadas , Ouro/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Tamanho da Partícula , Propriedades de Superfície , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA