Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 12(8): e0180732, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28797084

RESUMO

In soybean, variegated flowers can be caused by somatic excision of the CACTA-type transposable element Tgm9 from Intron 2 of the DFR2 gene encoding dihydroflavonol-4-reductase of the anthocyanin pigment biosynthetic pathway. DFR2 was mapped to the W4 locus, where the allele containing Tgm9 was termed w4-m. In this study we have demonstrated that previously identified morphological mutants (three chlorophyll deficient mutants, one male sterile-female fertile mutant, and three partial female sterile mutants) were caused by insertion of Tgm9 following its excision from DFR2. Analyses of Tgm9 insertion sites among 105 independent mutants demonstrated that Tgm9 hops to all 20 soybean chromosomes from its original location on Chromosome 17. Some genomic regions are prone to increased Tgm9-insertions. Tgm9 transposed over 25% of the time into exon or intron sequences. Tgm9 is therefore suitable for generating an indexed insertional mutant collection for functional analyses of most soybean genes. Furthermore, desirable Tgm9-induced stable knockout mutants can be utilized in generating improved traits for commercial soybean cultivars.


Assuntos
Oxirredutases do Álcool/genética , Elementos de DNA Transponíveis , Genes de Plantas , Glycine max/genética , Proteínas de Plantas/genética , Alelos , Cromossomos de Plantas/genética , Técnicas de Inativação de Genes , Mutação , Plantas Geneticamente Modificadas/genética
2.
Genome ; 58(4): 143-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26213292

RESUMO

In soybean, asynaptic and desynaptic mutants lead to abnormal meiosis and fertility reduction. Several male-sterile, female-sterile mutants have been identified and studied in soybean, however, some of these mutants have not been mapped to locations on soybean chromosomes. The objectives of this study were to molecularly map five male-sterile, female-sterile genes (st2, st4, st5, st6, and st7) in soybean and compare the map locations of these genes with already mapped sterility genes. Microsatellite markers were used in bulked segregant analyses to locate all five male-sterile, female-sterile genes to soybean chromosomes, and markers from the corresponding chromosomes were used on F2 populations to generate genetic linkage maps. The st2, st4, st5, st6, and st7 genes were located on molecular linkage group (MLG) B1 (chromosome 11), MLG D1a (chromosome 01), MLG F (chromosome 13), MLG B2 (chromosome 14), and D1b (chromosome 02), respectively. The st2, st4, st5, st6, and st7 genes were flanked to 10.3 (∼ 399 kb), 6.3 (∼ 164 kb), 3.9 (∼ 11.8 Mb), 11.0 (∼ 409 kb), and 5.3 cM (∼ 224 kb), and the flanked regions contained 57, 17, 362, 52, and 17 predicted genes, respectively. Future characterization of candidate genes should facilitate identification of the male- and female-fertility genes, which may provide vital insights on structure and function of genes involved in the reproductive pathway in soybean.


Assuntos
Cromossomos de Plantas/genética , Ligação Genética/genética , Glycine max/genética , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Mapeamento Cromossômico , Repetições de Microssatélites/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA