Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
bioRxiv ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39314437

RESUMO

The placenta develops alongside the embryo and nurtures fetal development to term. During the first stages of embryonic development, due to low blood circulation, the blood and ambient oxygen supply is very low (~1-2% O2) and gradually increases upon placental invasion. While a hypoxic environment is associated with stem cell self-renewal and proliferation, persistent hypoxia may have severe effects on differentiating cells and could be the underlying cause of placental disorders. We find that human trophoblast stem cells (hTSC) thrive in low oxygen, whereas differentiation of hTSC to trophoblast to syncytiotrophoblast (STB) and extravillous trophoblast (EVT) is negatively affected by hypoxic conditions. The pro-differentiation factor GCM1 (human Glial Cell Missing-1) is downregulated in low oxygen, and concordantly there is substantial reduction of GCM1-regulated genes in hypoxic conditions. Knockout of GCM1 in hTSC caused impaired EVT and STB formation and function, reduced expression of differentiation-responsive genes, and resulted in maintenance of self-renewal genes. Treatment with a PI3K inhibitor reported to reduce GCM1 protein levels likewise counteracts spontaneous or directed differentiation. Additionally, chromatin immunoprecipitation of GCM1 showed enrichment of GCM1-specific binding near key transcription factors upregulated upon differentiation including the contact inhibition factor CDKN1C. Loss of GCM1 resulted in downregulation of CDKN1C and corresponding loss of contact inhibition, implicating GCM1 in regulation of this critical process.

2.
Nat Metab ; 4(11): 1459-1473, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36344764

RESUMO

Noradrenaline (NA) regulates cold-stimulated adipocyte thermogenesis1. Aside from cAMP signalling downstream of ß-adrenergic receptor activation, how NA promotes thermogenic output is still not fully understood. Here, we show that coordinated α1-adrenergic receptor (AR) and ß3-AR signalling induces the expression of thermogenic genes of the futile creatine cycle2,3, and that early B cell factors, oestrogen-related receptors and PGC1α are required for this response in vivo. NA triggers physical and functional coupling between the α1-AR subtype (ADRA1A) and Gαq to promote adipocyte thermogenesis in a manner that is dependent on the effector proteins of the futile creatine cycle, creatine kinase B and tissue-non-specific alkaline phosphatase. Combined Gαq and Gαs signalling selectively in adipocytes promotes a continual rise in whole-body energy expenditure, and creatine kinase B is required for this effect. Thus, the ADRA1A-Gαq-futile creatine cycle axis is a key regulator of facultative and adaptive thermogenesis.


Assuntos
Creatina , Termogênese , Creatina/metabolismo , Termogênese/genética , Adipócitos/metabolismo , Metabolismo Energético/genética , Creatina Quinase/metabolismo
3.
Methods Mol Biol ; 2416: 201-211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34870838

RESUMO

Regulatory elements, such as promoters and enhancers, typically show reduced nucleosome occupancy, which is a feature that is commonly referred to as "open chromatin". The distribution of open chromatin sites can provide important clues about the transcription factors and regulatory networks that drive gene expression in a given cell. Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) is a rapid and robust method for mapping open chromatin sites. ATAC-seq data can also discern the binding sites of nucleosomes and transcription factors. In this chapter, we describe how to produce and assess the quality of ATAC-seq libraries that are generated from naïve human pluripotent stem cells.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Células-Tronco Pluripotentes , Cromatina/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Nucleossomos/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética
4.
Cell Rep ; 36(2): 109337, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260915

RESUMO

RNA-binding proteins play important roles in X-linked intellectual disability (XLID). In this study, we investigate the contribution of the XLID-associated RBMX in neuronal differentiation. We show that RBMX-depleted cells exhibit aberrant activation of the p53 pathway. Moreover, we identify that the RBMX RGG/RG motif is methylated by protein arginine methyltransferase 5 (PRMT5), and this regulates assembly with the SRSF1 splicing factor into higher-order complexes. Depletion of RBMX or disruption of the RBMX/SRSF1 complex in PRMT5-depleted cells reduces SRSF1 binding to the MDM4 precursor (pre-)mRNA, leading to exon 6 exclusion and lower MDM4 protein levels. Transcriptomic analysis of isogenic Shashi-XLID human-induced pluripotent stem cells (hiPSCs) generated using CRISPR-Cas9 reveals a dysregulation of MDM4 splicing and aberrant p53 upregulation. Shashi-XLID neural progenitor cells (NPCs) display differentiation and morphological abnormalities accompanied with excessive apoptosis. Our findings identify RBMX as a regulator of SRSF1 and the p53 pathway, suggesting that the loss of function of the RBMX RGG/RG motif is the cause of Shashi-XLID syndrome.


Assuntos
Diferenciação Celular , Ribonucleoproteínas Nucleares Heterogêneas/química , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Neurônios/metabolismo , Neurônios/patologia , Deleção de Sequência , Proteína Supressora de Tumor p53/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Processamento Alternativo/genética , Motivos de Aminoácidos , Arginina/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Metilação , Células-Tronco Neurais/metabolismo , Neurogênese , Ligação Proteica , Estabilidade Proteica , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas/genética , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo
5.
Sci Transl Med ; 13(590)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883275

RESUMO

Subcortical white matter stroke (WMS) accounts for up to 30% of all stroke events. WMS damages primarily astrocytes, axons, oligodendrocytes, and myelin. We hypothesized that a therapeutic intervention targeting astrocytes would be ideally suited for brain repair after WMS. We characterize the cellular properties and in vivo tissue repair activity of glial enriched progenitor (GEP) cells differentiated from human-induced pluripotent stem cells, termed hiPSC-derived GEPs (hiPSC-GEPs). hiPSC-GEPs are derived from hiPSC-neural progenitor cells via an experimental manipulation of hypoxia inducible factor activity by brief treatment with a prolyl hydroxylase inhibitor, deferoxamine. This treatment permanently biases these cells to further differentiate toward an astrocyte fate. hiPSC-GEPs transplanted into the brain in the subacute period after WMS in mice migrated widely, matured into astrocytes with a prorepair phenotype, induced endogenous oligodendrocyte precursor proliferation and remyelination, and promoted axonal sprouting. hiPSC-GEPs enhanced motor and cognitive recovery compared to other hiPSC-differentiated cell types. This approach establishes an hiPSC-derived product with easy scale-up capabilities that might be effective for treating WMS.


Assuntos
Demência Vascular , Acidente Vascular Cerebral , Substância Branca , Animais , Diferenciação Celular , Humanos , Camundongos , Bainha de Mielina , Oligodendroglia , Roedores , Acidente Vascular Cerebral/terapia
6.
Stem Cell Reports ; 15(1): 198-213, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32619492

RESUMO

Human embryonic stem cells (hESCs) readily differentiate to somatic or germ lineages but have impaired ability to form extra-embryonic lineages such as placenta or yolk sac. Here, we demonstrate that naive hESCs can be converted into cells that exhibit the cellular and molecular phenotypes of human trophoblast stem cells (hTSCs) derived from human placenta or blastocyst. The resulting "transdifferentiated" hTSCs show reactivation of core placental genes, acquisition of a placenta-like methylome, and the ability to differentiate to extravillous trophoblasts and syncytiotrophoblasts. Modest differences are observed between transdifferentiated and placental hTSCs, most notably in the expression of certain imprinted loci. These results suggest that naive hESCs can differentiate to extra-embryonic lineage and demonstrate a new way of modeling human trophoblast specification and placental methylome establishment.


Assuntos
Metilação de DNA/genética , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Transcriptoma/genética , Trofoblastos/citologia , Transdiferenciação Celular/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Impressão Genômica , Humanos , Integrina alfa2/metabolismo , Placenta/citologia , Gravidez , Primeiro Trimestre da Gravidez/fisiologia , Reprodutibilidade dos Testes , Trofoblastos/metabolismo
7.
Stem Cell Reports ; 10(5): 1453-1463, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742391

RESUMO

To determine the role for mutations of MECP2 in Rett syndrome, we generated isogenic lines of human induced pluripotent stem cells, neural progenitor cells, and neurons from patient fibroblasts with and without MECP2 expression in an attempt to recapitulate disease phenotypes in vitro. Molecular profiling uncovered neuronal-specific gene expression changes, including induction of a senescence-associated secretory phenotype (SASP) program. Patient-derived neurons made without MECP2 showed signs of stress, including induction of P53, and senescence. The induction of P53 appeared to affect dendritic branching in Rett neurons, as P53 inhibition restored dendritic complexity. The induction of P53 targets was also detectable in analyses of human Rett patient brain, suggesting that this disease-in-a-dish model can provide relevant insights into the human disorder.


Assuntos
Senescência Celular , Proteína 2 de Ligação a Metil-CpG/deficiência , Neurônios/metabolismo , Neurônios/patologia , Proteína Supressora de Tumor p53/metabolismo , Encéfalo/metabolismo , Dano ao DNA , Dendritos/metabolismo , Regulação da Expressão Gênica , Humanos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Modelos Biológicos , Síndrome de Rett/patologia , Transcriptoma/genética
8.
Data Brief ; 10: 202-209, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27995155

RESUMO

This article presents data related to the research article "Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain" (P. Moshayedi, L.R. Nih, I.L. Llorente, A.R. Berg, J. Cinkornpumin, W.E. Lowry et al., 2016) [1] and focuses on the biocompatibility aspects of the hydrogel, including its stiffness and the inflammatory response of the transplanted organ. We have developed an injectable hyaluronic acid (HA)-based hydrogel for stem cell culture and transplantation, to promote brain tissue repair after stroke. This 3D biomaterial was engineered to bind bioactive signals such as adhesive motifs, as well as releasing growth factors while supporting cell growth and tissue infiltration. We used a Design of Experiment approach to create a complex matrix environment in vitro by keeping the hydrogel platform and cell type constant across conditions while systematically varying peptide motifs and growth factors. The optimized HA hydrogel promoted survival of encapsulated human induced pluripotent stem cell derived-neural progenitor cells (iPS-NPCs) after transplantation into the stroke cavity and differentially tuned transplanted cell fate through the promotion of glial, neuronal or immature/progenitor states. The highlights of this article include: (1) Data of cell and bioactive signals addition on the hydrogel mechanical properties and growth factor diffusion, (2) the use of a design of Experiment (DOE) approach (M.W. 2 Weible and T. Chan-Ling, 2007) [2] to select multi-factorial experimental conditions, and (3) Inflammatory response and cell survival after transplantation.

9.
Biomaterials ; 105: 145-155, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27521617

RESUMO

Stem cell therapies have shown promise in promoting recovery in stroke but have been limited by poor cell survival and differentiation. We have developed a hyaluronic acid (HA)-based self-polymerizing hydrogel that serves as a platform for adhesion of structural motifs and a depot release for growth factors to promote transplant stem cell survival and differentiation. We took an iterative approach in optimizing the complex combination of mechanical, biochemical and biological properties of an HA cell scaffold. First, we optimized stiffness for a minimal reaction of adjacent brain to the transplant. Next hydrogel crosslinkers sensitive to matrix metalloproteinases (MMP) were incorporated as they promoted vascularization. Finally, candidate adhesion motifs and growth factors were systemically changed in vitro using a design of experiment approach to optimize stem cell survival or proliferation. The optimized HA hydrogel, tested in vivo, promoted survival of encapsulated human neural progenitor cells (iPS-NPCs) after transplantation into the stroke core and differentially tuned transplanted cell fate through the promotion of glial, neuronal or immature/progenitor states. This HA hydrogel can be tracked in vivo with MRI. A hydrogel can serve as a therapeutic adjunct in a stem cell therapy through selective control of stem cell survival and differentiation in vivo.


Assuntos
Encéfalo/patologia , Hidrogéis/química , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia , Alicerces Teciduais , Animais , Encéfalo/cirurgia , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Regeneração Tecidual Guiada/instrumentação , Humanos , Ácido Hialurônico/química , Masculino , Teste de Materiais , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Células-Tronco/instrumentação , Transplante de Células-Tronco/métodos , Propriedades de Superfície , Resistência à Tração , Resultado do Tratamento , Viscosidade
10.
Stem Cell Reports ; 3(5): 743-57, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25418722

RESUMO

Hypoxia augments human embryonic stem cell (hESC) self-renewal via hypoxia-inducible factor 2α-activated OCT4 transcription. Hypoxia also increases the efficiency of reprogramming differentiated cells to a pluripotent-like state. Combined, these findings suggest that low O2 tension would impair the purposeful differentiation of pluripotent stem cells. Here, we show that low O2 tension and hypoxia-inducible factor (HIF) activity instead promote appropriate hESC differentiation. Through gain- and loss-of-function studies, we implicate O2 tension as a modifier of a key cell fate decision, namely whether neural progenitors differentiate toward neurons or glia. Furthermore, our data show that even transient changes in O2 concentration can affect cell fate through HIF by regulating the activity of MYC, a regulator of LIN28/let-7 that is critical for fate decisions in the neural lineage. We also identify key small molecules that can take advantage of this pathway to quickly and efficiently promote the development of mature cell types.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Oxigênio/farmacologia , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Hipóxia Celular , Linhagem Celular , Proliferação de Células/genética , Células Cultivadas , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Análise de Sequência com Séries de Oligonucleotídeos , Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
11.
Elife ; 32014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25317948

RESUMO

Nematodes and insects are the two most speciose animal phyla and nematode-insect associations encompass widespread biological interactions. To dissect the chemical signals and the genes mediating this association, we investigated the effect of an oriental beetle sex pheromone on the development and behavior of the nematode Pristionchus pacificus. We found that while the beetle pheromone is attractive to P. pacificus adults, the pheromone arrests embryo development, paralyzes J2 larva, and inhibits exit of dauer larvae. To uncover the mechanism that regulates insect pheromone sensitivity, a newly identified mutant, Ppa-obi-1, is used to reveal the molecular links between altered attraction towards the beetle pheromone, as well as hypersensitivity to its paralyzing effects. Ppa-obi-1 encodes lipid-binding domains and reaches its highest expression in various cell types, including the amphid neuron sheath and excretory cells. Our data suggest that the beetle host pheromone may be a species-specific volatile synomone that co-evolved with necromeny.


Assuntos
Comportamento Animal/efeitos dos fármacos , Besouros/parasitologia , Interações Hospedeiro-Parasita/efeitos dos fármacos , Nematoides/crescimento & desenvolvimento , Feromônios/farmacologia , Animais , Clonagem Molecular , Embrião não Mamífero/efeitos dos fármacos , Genes de Helmintos , Cetonas/farmacologia , Larva/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Nematoides/efeitos dos fármacos , Nematoides/embriologia , Nematoides/genética , Neuroglia/metabolismo
12.
J Vis Exp ; (56): e3270, 2011 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22025167

RESUMO

Although it is increasingly affordable for emerging model organisms to obtain completely sequenced genomes, further in-depth gene function and expression analyses by RNA interference and stable transgenesis remain limited in many species due to the particular anatomy and molecular cellular biology of the organism. For example, outside of the crown group Caenorhabditis that includes Caenorhabditis elegans, stably transmitted transgenic lines in non-Caenorhabditis species have not been reported in this specious phylum (Nematoda), with the exception of Strongyloides stercoralis and Pristionchus pacificus. To facilitate the expanding role of P. pacificus in the study of development, evolution, and behavior, we describe here the current methods to use microinjection for making transgenic animals and gene knock down by RNAi. Like the gonads of C. elegans and most other nematodes, the gonads of P. pacificus is syncitial and capable of incorporating DNA and RNA into the oocytes when delivered by direct microinjection. Unlike C. elegans however, stable transgene inheritance and somatic expression in P. pacificus requires the addition of self genomic DNA digested with endonucleases complementary to the ends of target transgenes and coinjection markers. The addition of carrier genomic DNA is similar to the requirement for transgene expression in Strongyloides stercoralis and in the germ cells of C. elegans. However, it is not clear if the specific requirement for the animals' own genomic DNA is because P. pacificus soma is very efficient at silencing non-complex multi-copy genes or that extrachromosomal arrays in P. pacificus require genomic sequences for proper kinetochore assembly during mitosis. The ventral migration of the two-armed (didelphic) gonads in hermaphrodites further complicates the ability to inject both gonads in individual worms. We also demonstrate the use of microinjection to knockdown a dominant mutant (roller,tu92) by injecting double-stranded RNA (dsRNA) into the gonads to obtain non-rolling F(1) progeny. Unlike C. elegans, but like most other nematodes, P. pacificus PS312 is not receptive to systemic RNAi via feeding and soaking and therefore dsRNA must be administered by microinjection into the syncitial gonads. In this current study, we hope to describe the microinjection process needed to transform a Ppa-egl-4 promoter::GFP fusion reporter and knockdown a dominant roller prl-1 (tu92) mutant in a visually informative protocol.


Assuntos
Técnicas de Silenciamento de Genes/métodos , Nematoides/genética , Interferência de RNA , Transgenes , Animais , Microinjeções/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA