RESUMO
Identifying certain serum biomarkers associated with the degree of rheumatoid arthritis (RA) activity can provide us with a more accurate view of the evolution, prognosis, and future quality of life for these patients. Our aim was to analyze the presence and clinical use of matrix metalloproteinase-13 (MMP-13), along with vascular endothelial growth factor (VEGF) and well-known cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) for patients with RA. We also wanted to identify the possible correlations between MMP-13 and these serological markers, as well as their relationship with disease activity indices, quality of life, and ultrasonographic evaluation. For this purpose, we analyzed serum samples of 34 RA patients and 12 controls. In order to assess serum concentrations for MMP-13, VEGF, TNF-α, and IL-6, we used the enzyme-linked immunosorbent assay (ELISA) technique. Our results concluded that higher levels of MMP-13, VEGF, TNF-α, and IL-6 were present in the serum of RA patients compared to controls, with statistical significance. We furthermore identified moderately positive correlations between VEGF, MMP-13, and disease activity indices, as well as with the ultrasound findings. We also observed that VEGF had the best accuracy (97.80%), for differentiating patients with moderate disease activity. According to the data obtained in our study, that although MMP-13, TNF-α and C-reactive protein (CRP) have the same sensitivity (55.56%), MMP-13 has a better specificity (86.67%) in the diagnosis of patients with DAS28(4v) CRP values corresponding to moderate disease activity. Thus, MMP-13 can be used as a biomarker that can differentiate patients with moderate or low disease activity. VEGF and MMP-13 can be used as additional parameters, along with TNF-α and IL-6, that can provide the clinician a better picture of the inflammatory process, disease activity, and structural damage in patients with RA. Our data can certainly constitute a start point for future research and extended studies with multicenter involvement, to support the selection of individualized and accurate therapeutic management strategies for our patients.
RESUMO
Ankylosing spondylitis (AS) is a progressive common autoimmune inflammatory disease, part of the spondylarthritis group, characterized, besides clinical spinal and peripheral joint inflammation, by enthesitis and new bone formation, that can lead to severe functional impairment. Beyond intensive and continuous research on the pathogenic process extensively performed in recent years, their impact on therapeutic management remains open to future development. Better knowledge of AS pathogenesis have shown results progressively and studies are being performed to advance our current understanding of the disease. It is well known that tumor necrosis factor (TNF) exerts a central role, along with interleukin-17 (IL-17) and interleukin-23 (IL-23), demonstrated by several clinical studies. Similar to other rheumatic inflammatory conditions, SA is associated with an early process of systemic bone loss, both trabecular and cortical, consecutive osteopenia, osteoporosis, and high fracture risk. Current personalized therapeutic options benefit from new published data, to prevent future complications and to improve quality of life.
RESUMO
Rheumatoid arthritis (RA) is classified as an inflammatory, chronic autoimmune and disabling disease based on the intricate interplay between environmental and genetic factors. With a prevalence ranging from 0.3 to 1%, RA is the most prevalent inflammatory joint disease observed in adults. Disruption of immune tolerance becomes evident when abnormal stimulation of the innate and adaptive immune system occurs. This cascade of events causes persistent joint inflammation, proliferative synovitis and, ultimately, damage of the underlying cartilage as well as the subchondral bone, leading to permanent joint destruction, deformity and subsequent loss of function. With cytokines being the key to a multitude of biological processes, including inflammation, hematopoiesis and overall immune response, one must inevitably look at the main pathways through which a significant number of those molecules exert their function. Janus kinase/signal transducers and activators of transcription (JAK/STATs) represent one such pathway and, recently, JAK inhibitors (JAKinibs) have shown promise in the treatment of several inflammatory diseases, including RA. This narrative review focuses on the intricate signaling pathways involved as well as on the clinical aspects and safety profiles of JAKinibs approved for the treatment of RA.
RESUMO
Neuroinflammation is a complex process that contributes to the pathogenesis of both immune mediated and neurodegenerative pathologies. Systemic lupus erythematosus (SLE) is the prototype of connective tissue diseases that can present the complete spectrum of neurological and psychiatric dysfunctions. The precise etiological diagnosis of neuropsychiatric systemic lupus erythematosus (NPSLE) is rather difficult to be established and it is still controversial the exact timing of neuropsychiatric (NPS) events: either central nervous system (CNS) is the initial target of autoimmune abnormalities, either NPS symptoms are a part of multisystem involvement. Ischemic and inflammatory mechanisms have an important input on NPSLE pathogenesis. Neuroinflammation, consequent to blood-brain barrier (BBB) damage, local and systemic production of autoantibodies, determine neuronal injury and apoptosis, further responsible for diffuse cerebral events, mostly cognitive dysfunction and psychotic disorder. Moreover, SLE complications or therapy complications can interfere and contribute to complex clinical manifestations that can be present in SLE patients. Understanding the role of each pathogenic way can provide not only an early diagnosis, but a more accurate therapeutic approach of these patients.