Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(29): 24778-24787, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28671835

RESUMO

Due to a still limited understanding of the reasons making 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD) the state-of-the-art hole-transporting material (HTM) for emerging photovoltaic applications, the molecular tailoring of organic components for perovskite solar cells (PSCs) lacks in solid design criteria. Charge delocalization in radical cationic states can undoubtedly be considered as one of the essential prerequisites for an HTM, but this aspect has been investigated to a relatively minor extent. In marked contrast with the 3-D structure of Spiro-OMeTAD, truxene-based HTMs Trux1 and Trux2 have been employed for the first time in PSCs fabricated with a direct (n-i-p) or inverted (p-i-n) architecture, exhibiting a peculiar behavior with respect to the referential HTM. Notwithstanding the efficient hole extraction from the perovskite layer exhibited by Trux1 and Trux2 in direct configuration devices, their photovoltaic performances were detrimentally affected by their poor hole transport. Conversely, an outstanding improvement of the photovoltaic performances in dopant-free inverted configuration devices compared to Spiro-OMeTAD was recorded, ascribable to the use of thinner HTM layers. The rationalization of the photovoltaic performances exhibited by different configuration devices discussed in this paper can provide new and unexpected prospects for engineering the interface between the active layer of perovskite-based solar cells and the hole transporters.

2.
Inorg Chem ; 55(11): 5245-53, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27212146

RESUMO

A tetracoordinated redox couple, made by [Cu(2-mesityl-4,7-dimethyl-1,10-phenanthroline)2][PF6], 1, and its Cu(II) form [Cu(2-mesityl-4,7-dimethyl-1,10-phenanthroline)2][PF6]2, 2, has been synthesized, and its electrochemical and photochemical features have been investigated and compared with those of a previously published Cu(2+)/Cu(+) redox shuttle, namely, [Cu(2,9-dimethyl-1,10-phenanthroline)2][PF6], 3, and its pentacoordinated oxidized form [Cu(2,9-dimethyl-1,10-phenanthroline)2Cl][PF6], 4. The detrimental effect of the fifth Cl(-) ancillary ligand on the charge transfer kinetics of the redox shuttles has been exhaustively demonstrated. Appropriately balanced Cu-based electrolytes have been then formulated and tested in dye solar cells in combination with a π-extended benzothiadiazole dye. The bis-phenanthroline Cu-complexes, 1 and 2, have been found to provide an overall 4.4% solar energy conversion efficiency, which is more than twice that of the literature benchmark couple, 3 and 4, employing a Cl-coordinated oxidized species and even comparable with the performances of a I(-)/I3(-) electrolyte of analogous concentration. A fast counter-electrode reaction, due to the excellent electrochemical reversibility of 2, and a high electron collection efficiency, allowed through the efficient dye regeneration kinetics exerted by 1, represents two major characteristics of these copper-based electron mediators and may constitute a pivotal step toward the development of a next generation of copper-based efficient iodine-free redox shuttles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA