Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166980, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38061599

RESUMO

Disruption of brain cholesterol homeostasis has been implicated in neurodegeneration. Nevertheless, the role of cholesterol in Parkinson's Disease (PD) remains unclear. We have used N2a mouse neuroblastoma cells and primary cultures of mouse neurons and 1-methyl-4-phenylpyridinium (MPP+), a known mitochondrial complex I inhibitor and the toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), known to trigger a cascade of events associated with PD neuropathological features. Simultaneously, we utilized other mitochondrial toxins, including antimycin A, oligomycin, and carbonyl cyanide chlorophenylhydrazone. MPP+ treatment resulted in elevated levels of total cholesterol and in a Niemann Pick type C1 (NPC1)-like phenotype characterized by accumulation of cholesterol in lysosomes. Interestingly, NPC1 mRNA levels were specifically reduced by MPP+. The decrease in NPC1 levels was also seen in midbrain and striatum from MPTP-treated mice and in primary cultures of neurons treated with MPP+. Together with the MPP+-dependent increase in intracellular cholesterol levels in N2a cells, we observed an increase in 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and a concomitant increase in the phosphorylated levels of mammalian target of rapamycin (mTOR). NPC1 knockout delayed cell death induced by acute mitochondrial damage, suggesting that transient cholesterol accumulation in lysosomes could be a protective mechanism against MPTP/MPP+ insult. Interestingly, we observed a negative correlation between NPC1 protein levels and disease stage, in human PD brain samples. In summary, MPP+ decreases NPC1 levels, elevates lysosomal cholesterol accumulation and alters mTOR signaling, adding to the existing notion that PD may rise from alterations in mitochondrial-lysosomal communication.


Assuntos
Doença de Parkinson , Animais , Humanos , Camundongos , Colesterol/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína C1 de Niemann-Pick , Fenótipo , Serina-Treonina Quinases TOR/metabolismo
2.
Eur J Histochem ; 64(2)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32236088

RESUMO

Schwann cells (SC) are characterized by a remarkable plasticity that enables them to promptly respond to nerve injury promoting axonal regeneration. In peripheral nerves after damage SC convert to a repair-promoting phenotype activating a sequence of supportive functions that drive myelin clearance, prevent neuronal death, and help axon growth and guidance. Regeneration of peripheral nerves after damage correlates inversely with thrombin levels. Thrombin is not only the key regulator of the coagulation cascade but also a protease with hormone-like activities that affects various cells of the central and peripheral nervous system mainly through the protease-activated receptor 1 (PAR1). Aim of the present study was to investigate if and how thrombin could affect the axon supportive functions of SC. In particular, our results show that the activation of PAR1 in rat SC cultures with low levels of thrombin or PAR1 agonist peptides induces the release of molecules, which favor neuronal survival and neurite elongation. Conversely, the stimulation of SC with high levels of thrombin or PAR1 agonist peptides drives an opposite effect inducing SC to release factors that inhibit the extension of neurites. Moreover, high levels of thrombin administered to sciatic nerve ex vivo explants induce a dramatic change in SC morphology causing disappearance of the Cajal bands, enlargement of the Schmidt-Lanterman incisures and calcium-mediated demyelination of the paranodes. Our results indicate thrombin as a novel modulator of SC plasticity potentially able to favor or inhibit SC pro-regenerative properties according to its level at the site of lesion.


Assuntos
Neurogênese/efeitos dos fármacos , Nós Neurofibrosos/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Trombina/farmacologia , Animais , Cálcio/metabolismo , Feminino , Masculino , Neuritos/efeitos dos fármacos , Células PC12 , Pirróis/farmacologia , Quinazolinas/farmacologia , Ratos , Ratos Wistar , Receptor PAR-1/metabolismo , Nervo Isquiático/efeitos dos fármacos , Tapsigargina/farmacologia
3.
Curr Alzheimer Res ; 14(7): 753-759, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28176663

RESUMO

BACKGROUND: The GSK3ß has been associated to pathological functions in neurodegenerative diseases. This kinase is involved in hyperphosphorylation of microtubule-associated tau protein, leading to aggregation andformation of NFTs. It has clearly been shown that GSK3ß is regulated at posttranslational level: phosphorylation at Tyr216 activates kinase, while phosphorylation at Ser9 is essential to inhibit its activity. OBJECTIVES: At present, there are contradictory findings about the possibility that GSK3ß may be regulated at gene level. Previous data showed overexpression of GSK3ß mRNA in hypomethylating conditions, pointing out to the existence of epigenetic mechanisms responsible for GSK3ß gene regulation. Analysis of human GSK3ß promoter through bisulphite modification, both in neuroblastoma cells and in postmortem frontal cortex from AD patients (AD patients both at Braak stages I-II and at stages V-VI) , allowed us to characterize the methylation pattern of a putative CpG islands in human GSK3ß 5'- flanking region. RESULTS: The analysis evidenced overall hypomethylation of CpG and non-CpG cytosine residues both in cells and in human brain (AD patients and control subjects). We found that GSK3ß mRNA was overexpressed only in patients with initial AD, with no effect on the levels of the protein. On the other hand, we unexpectedly observed the decrease of the inactive GSK3ß in cortex from AD patients at Braak stages I-II, whereas considerable increase was observed in AD patients at stages V-VI compared to the control subjects. CONCLUSIONS: These results point out that GSK3ß hyperactivity, and then NFTs formation, could come into function at an early stage of the disease and then turn off at the last stages.


Assuntos
Doença de Alzheimer/patologia , Metilação de DNA/fisiologia , Lobo Frontal/enzimologia , Glicogênio Sintase Quinase 3 beta/genética , Proteínas 14-3-3/metabolismo , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Linhagem Celular Tumoral , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Neuroblastoma/patologia , Emaranhados Neurofibrilares/patologia , Fosforilação , Regiões Promotoras Genéticas/genética , RNA Mensageiro/metabolismo , Serina/metabolismo
4.
Mol Cell Neurosci ; 79: 23-33, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28064059

RESUMO

Protease-activated receptor-1 (PAR1) is the prototypic member of a family of four G-protein-coupled receptors that signal in response to extracellular proteases. In the peripheral nervous system, the expression and/or the role of PARs are still poorly investigated. High PAR1 mRNA expression was found in the rat dorsal root ganglia and the signal intensity of PAR1 mRNA increased in response to sciatic nerve transection. In the sciatic nerve, functional PAR1 receptor was reported at the level of non-compacted Schwann cell myelin microvilli of the nodes of Ranvier. Schwann cells are the principal population of glial cells of the peripheral nervous system which myelinate axons playing an important role during axonal regeneration and remyelination. The present study was undertaken in order to determine if the activation of PAR1 affects the neurotrophic properties of Schwann cells. Our results suggest that the stimulation of PAR1 could potentiate the Schwann cell ability to favour nerve regeneration. In fact, the conditioned medium obtained from Schwann cell cultures challenged with a specific PAR1 activating peptide (PAR1 AP) displays increased neuroprotective and neurotrophic properties with respect to the culture medium from untreated Schwann cells. The proteomic analysis of secreted proteins in untreated and PAR1 AP-treated Schwann cells allowed the identification of factors differentially expressed in the two samples. Some of them (such as macrophage migration inhibitory factor, matrix metalloproteinase-2, decorin, syndecan 4, complement C1r subcomponent, angiogenic factor with G patch and FHA domains 1) appear to be transcriptionally regulated after PAR1 AP treatment as shown by RT-PCR.


Assuntos
Fatores de Crescimento Neural/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células de Schwann/metabolismo , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Células Cultivadas , Complemento C1q/genética , Complemento C1q/metabolismo , Complemento C1r/genética , Complemento C1r/metabolismo , Meios de Cultivo Condicionados/farmacologia , Decorina/genética , Decorina/metabolismo , Feminino , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores de Crescimento Neural/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Células PC12 , Ratos , Ratos Wistar , Nervo Isquiático/citologia , Nervo Isquiático/metabolismo , Nervo Isquiático/fisiologia , Sindecana-4/genética , Sindecana-4/metabolismo
5.
J Mol Neurosci ; 61(3): 359-367, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27866325

RESUMO

Recent evidence highlights the protective role of reelin against amyloid ß (Aß)-induced synaptic dysfunction and cognitive impairment in Alzheimer disease (AD). In this study, exploiting TgCRND8 mice that overexpress a mutant form of amyloid ß precursor protein (AßPP) and display an early onset of AD neuropathological signs, we addressed the question whether changes of reelin expression eventually precede the appearance of Aß-plaques in a sex-dependent manner. We show that sex-associated and brain region-specific differences in reelin expression appear long before Aß-plaque formation. However, in spite of a downregulation of reelin expression compared to males, TgCRND8 females display fewer Aß-plaques, suggesting that additional factors, other than sex and reelin level, influence amyloidosis in this mouse model.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Moléculas de Adesão Celular Neuronais/genética , Regulação para Baixo , Proteínas da Matriz Extracelular/genética , Feminino , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Especificidade de Órgãos , Proteína Reelina , Serina Endopeptidases/genética , Fatores Sexuais
6.
J Appl Toxicol ; 37(2): 207-213, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27226005

RESUMO

Trimethyltin (TMT) is a highly toxic molecule present as an environmental contaminant causing neurodegeneration particularly of the limbic system both in humans and in rodents. We recently described the occurrence of impairment in the late stages of autophagy in TMT-intoxicated astrocytes. Here we show that similarly to astrocytes also in microglia, TMT induces the precocious block of autophagy indicated by the accumulation of the autophagosome marker, microtubule associated protein light chain 3. Consistent with autophagy impairment we observe in TMT-treated microglia the accumulation of p62/SQSTM1, a protein specifically degraded through this pathway. Lithium has been proved effective in limiting neurodegenerations and, in particular, in ameliorating symptoms of TMT intoxication in rodents. In our in vitro model, lithium displays a pro-survival and anti-inflammatory action reducing both cell death and the proinflammatory response of TMT-treated microglia. In particular, lithium exerts these activities without reducing TMT-induced accumulation of light chain 3 protein. In fact, the autophagic block imposed by TMT is unaffected by lithium administration. These results are of interest as defects in the execution of autophagy are frequently observed in neurodegenerative diseases and lithium is considered a promising therapeutic agent for these pathologies. Thus, it is relevant that this cation can still maintain its pro-survival and anti-inflammatory role in conditions of autophagy block. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Autofagia/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Lítio/farmacologia , Microglia , Fármacos Neuroprotetores/farmacologia , Compostos de Trimetilestanho/toxicidade , Animais , Animais Recém-Nascidos , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Interleucina-10/imunologia , Masculino , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/patologia , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA