Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38917483

RESUMO

This study investigated the impact of a multiday heatwave on nocturnal physiology, behavior, and sleep under controlled conditions with comprehensive monitoring of environmental factors and participant activities. Seven young healthy males were confined for ten days in controlled conditions that ranged between hot-to-warm (day:35.4°C, night:26.3°C) during nights 4-6 and temperate (day:25.4°C, night:22.3°C) before (nights 1-3) and after (nights 7-10) the heatwave. Measurements included core and skin temperatures, heart rate, sympathovagal balance, vasomotion indicators, urine samples, blanket coverage, subjective sleep assessments, and partial polysomnography. The average nocturnal core temperature was 0.2°C higher during and after the heatwave compared to the pre-heatwave period, with this difference being more pronounced (+0.3°C) in the first two hours of sleep (p<0.001). For every 0.1°C rise in overnight core temperature, the total sleep time decreased by 14 minutes (pseudo-R2=0.26, p=0.01). The elevated core temperatures occurred despite the participants exhibiting evident thermoregulatory behavior, as they covered 30% less body surface during the heatwave compared to pre- and post-heatwave periods (p<0.001). During the heatwave, mean skin temperature at bedtime was 1.3°C higher than pre-heatwave and 0.8°C higher than post-heatwave periods (p<0.001). No differences in other responses, including heart rate and vasomotion indicators, were observed. The paper details a 20-minute sleepwalking episode that was coupled with marked changes in sleepwalker's thermophysiological responses. In conclusion, the simulated heatwave resulted in higher overnight core temperature which was associated with reduced total sleep time. Behavioral thermoregulation during sleep may serve as a defense against these effects, though more research is needed.

2.
J Therm Biol ; 112: 103442, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36796897

RESUMO

INTRODUCTION: A wide range of cooling vests for heat-strain mitigation purposes during physical work are available on the market. The decision regarding the optimal cooling vest/concept for a specific environment can be challenging by relying solely on the information provided by the manufacturers. The aim of this study was to investigate how different types of cooling vests would manifest/perform in a simulated industrial setting, in a warm and moderately humid environment with low air velocity. METHODS: Ten young males completed six experimental trials, including a control trial (no vest) and five trials with vests of different cooling concepts. Once entering the climatic chamber (ambient temperature: 35 °C, relative humidity: 50 %), participants remained seated for 30 min to induce passive heating, after which they donned a cooling vest and started a 2.5-h of walk at 4.5 km·h-1. During the trial, torso skin temperature (Tsk), microclimate temperature (Tmicro) and relative humidity (RHmicro), as well as core temperature (rectal and gastrointestinal; Tc) and heart rate (HR) were measured. Before and after the walk, participants conducted different cognitive tests and provided subjective ratings throughout the walk. RESULTS: The use of the vests attenuated the increase in HR (103 ± 12 bpm) when compared to control trial (116 ± 17 bpm, p < 0.05). Four vests maintained a lower torso Tsk (31.7 ± 1.5 °C) compared to control trial (36.1 ± 0.5 °C, p < 0.05). Two vests using PCM inserts attenuated the increase in Tc between 0.2 and 0.5 °C in relation to control trial (p < 0.05). Cognitive performance remained unchanged between the trials. Physiological responses were also well reflected in subjective reports. CONCLUSION: Most vests could be considered as an adequate mitigation strategy for workers in industry under the conditions simulated in the present study.


Assuntos
Temperatura Alta , Roupa de Proteção , Masculino , Humanos , Temperatura Cutânea , Temperatura Baixa , Transição de Fase , Frequência Cardíaca/fisiologia , Regulação da Temperatura Corporal/fisiologia
3.
Sci Rep ; 12(1): 19998, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411293

RESUMO

Global warming has caused an increase in the frequency, duration, and intensity of summer heatwaves (HWs). Prolonged exposure to hot environments and orthostasis may cause conflicting demands of thermoregulation and blood pressure regulation on the vasomotor system, potentially contributing to cardiovascular complications and occupational heat strain. This study assessed cardiovascular and skin blood flow (SkBF) responses to orthostasis before, during and after a 3-day simulated HW. Seven male participants maintained a standard work/rest schedule for nine consecutive days split into three 3-day parts; thermoneutral pre-HW (25.4 °C), simulated HW (35.4 °C), thermoneutral post-HW. Gastrointestinal (Tgi) and skin (Tsk) temperatures, cardiovascular responses, and SkBF were monitored during 10-min supine and 10-min 60° head-up tilt (HUT). SkBF, indexed using proximal-distal skin temperature gradient (∆TskP-D), was validated using Laser-Doppler Flowmetry (LDF). The HW significantly increased heart rate, cardiac output and SkBF of the leg in supine; HUT increased SkBF of the arm and leg, and significantly affected all cardiovascular variables besides cardiac output. Significant regional differences in SkBF presented between the arm and leg in all conditions; the arm displaying vasodilation throughout, while the leg vasoconstricted in non-HW before shifting to vasodilation in the HW. Additionally, ∆TskP-D strongly correlated with LDF (r = -.78, p < 0.001). Prolonged HW exposure and orthostasis, individually, elicited significant changes in cardiovascular and SkBF variables. Additionally, varying regional blood flow responses were observed, suggesting the upper and lower vasculature receives differing vasomotor control. Combined cardiovascular alterations and shifts towards vasodilation indicate an increased challenge to industrial workers during HWs.


Assuntos
Sistema Cardiovascular , Tontura , Humanos , Masculino , Temperatura Cutânea , Fluxo Sanguíneo Regional , Regulação da Temperatura Corporal
4.
Sensors (Basel) ; 22(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35161573

RESUMO

There is a need to rapidly screen individuals for heat strain and fever using skin temperature (Tsk) as an index of deep body temperature (Tb). This study's aim was to assess whether Tsk could serve as an accurate and valid index of Tb during a simulated heatwave. Seven participants maintained a continuous schedule over 9-days, in 3-day parts; pre-/post-HW (25.4 °C), simulated-HW (35.4 °C). Contact thermistors measured Tsk (Tforehead, Tfinger); radio pills measured gastrointestinal temperature (Tgi). Proximal-distal temperature gradients (ΔTforehead-finger) were also measured. Measurements were grouped into ambient conditions: 22, 25, and 35 °C. Tgi and Tforehead only displayed a significant relationship in 22 °C (r: 0.591; p < 0.001) and 25 °C (r: 0.408; p < 0.001) conditions. A linear regression of all conditions identified Tforehead and ΔTforehead-finger as significant predictors of Tgi (r2: 0.588; F: 125.771; p < 0.001), producing a root mean square error of 0.26 °C. Additional residual analysis identified Tforehead to be responsible for a plateau in Tgi prediction above 37 °C. Contact Tforehead was shown to be a statistically suitable indicator of Tgi in non-HW conditions; however, an error of ~1 °C makes this physiologically redundant. The measurement of multiple sites may improve Tb prediction, though it is still physiologically unsuitable, especially at higher ambient temperatures.


Assuntos
Temperatura Corporal , Temperatura Cutânea , Febre , Testa , Temperatura Alta , Humanos , Temperatura
5.
Sensors (Basel) ; 21(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502822

RESUMO

Monitoring core body temperature (Tc) during training and competitions, especially in a hot environment, can help enhance an athlete's performance, as well as lower the risk for heat stroke. Accordingly, a noninvasive sensor that allows reliable monitoring of Tc would be highly beneficial in this context. One such novel non-invasive sensor was recently introduced onto the market (CORE, greenTEG, Rümlang, Switzerland), but, to our knowledge, a validation study of this device has not yet been reported. Therefore, the purpose of this study was to evaluate the validity and reliability of the CORE sensor. In Study I, 12 males were subjected to a low-to-moderate heat load by performing, on two separate occasions several days apart, two identical 60-min bouts of steady-state cycling in the laboratory at 19 °C and 30% relative humidity. In Study II, 13 males were subjected to moderate-to-high heat load by performing 90 min of cycling in the laboratory at 31 °C and 39% relative humidity. In both cases the core body temperatures indicated by the CORE sensor were compared to the corresponding values obtained using a rectal sensor (Trec). The first major finding was that the reliability of the CORE sensor is acceptable, since the mean bias between the two identical trials of exercise (0.02 °C) was not statistically significant. However, under both levels of heat load, the body temperature indicated by the CORE sensor did not agree well with Trec, with approximately 50% of all paired measurements differing by more than the predefined threshold for validity of ≤0.3 °C. In conclusion, the results obtained do not support the manufacturer's claim that the CORE sensor provides a valid measure of core body temperature.


Assuntos
Temperatura Corporal , Golpe de Calor , Exercício Físico , Temperatura Alta , Humanos , Masculino , Reprodutibilidade dos Testes
6.
Life (Basel) ; 11(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34357053

RESUMO

Due to the static and dynamic activity of the skin temperature sensors, the cutaneous thermal afferent information is dependent on the rate and direction of the temperature change, which would suggest different perceptions of temperature and of thermal comfort during skin heating and cooling. This hypothesis was tested in the present study. Subjects (N = 12; 6 females and 6 males) donned a water-perfused suit (WPS) in which the temperature was varied in a saw-tooth manner in the range from 27 to 42 °C. The rate of change of temperature of the water perfusing the suit (TWPS) was 1.2 °C min-1 during both the heating and cooling phases. The trial was repeated thrice, with subjects reporting their perception of the temperature and thermal comfort at each 3 °C change in TWPS. In addition, subjects were instructed to report when they perceived TWPS uncomfortably cool and warm during cooling and heating, respectively. Subjects reproducibly identified the boundaries of their Thermal Comfort Zone (TCZ), defined as the lower (Tlow) and upper (Thigh) temperatures at which subjects reported slight thermal discomfort. During the heating phase, Tlow and Thigh were 30.0 ± 1.5 °C and 35.1 ± 2.9 °C, respectively. During the cooling phase, the boundary temperatures of Tlow and Thigh were 35.4 ± 1.9 °C and 38.7 ± 2.3 °C, respectively. The direction of the change in the cutaneous temperature stimulus affects the boundaries of the TCZ, such that they are higher during cooling and lower during heating. These findings are explained on the basis of the neurophysiology of thermal perception. From an applied perspective, the most important observation of the present study was the strong correlation between the perception of thermal comfort and the behavioral regulation of thermal comfort. Although it is not surprising that the action of regulating thermal comfort is aligned with its perception, this link has not been proven for humans in previous studies. The results therefore provide a sound basis to consider ratings of thermal comfort as reflecting behavioral actions to achieve the sensation of thermal neutrality.

7.
Eur J Appl Physiol ; 121(11): 3005-3015, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34245332

RESUMO

PURPOSE: It has been reported that the cold-induced vasodilation (CIVD) response can be trained using either regular local cold stimulation or exercise training. The present study investigated whether repeated exposure to environmental stressors, known to improve aerobic performance (heat and/or hypoxia), could also provide benefit to the CIVD response. METHODS: Forty male participants undertook three 10-day acclimation protocols including daily exercise training: heat acclimation (HeA; daily exercise training at an ambient temperature, Ta = 35 °C), combined heat and hypoxic acclimation (HeA/HypA; daily exercise training at Ta = 35 °C, while confined to a simulated altitude of ~ 4000 m) and exercise training in normoxic thermoneutral conditions (NorEx; no environmental stressors). To observe potential effects of the local acclimation on the CIVD response, participants additionally immersed their hand in warm water (35 °C) daily during the HeA/HypA and NorEx. Before and after the acclimation protocols, participants completed hand immersions in cold water (8 °C) for 30 min, followed by 15-min recovery phases. The temperature was measured in each finger. RESULTS: Following the HeA protocol, the average temperature of all five fingers was higher during immersion (from 13.9 ± 2.4 to 15.5 ± 2.5 °C; p = 0.04) and recovery (from 22.2 ± 4.0 to 25.9 ± 4.9 °C; p = 0.02). The HeA/HypA and NorEx protocols did not enhance the CIVD response. CONCLUSION: Whole-body heat acclimation increased the finger vasodilatory response during cold-water immersion, and enhanced the rewarming rate of the hand, thus potentially contributing to improved local cold tolerance. Daily hand immersion in warm water for 10 days during HeA/Hyp and NorEx, did not contribute to any changes in the CIVD response.


Assuntos
Aclimatação/fisiologia , Temperatura Baixa , Exercício Físico/fisiologia , Mãos , Vasodilatação/fisiologia , Voluntários Saudáveis , Temperatura Alta , Humanos , Masculino , Adulto Jovem
8.
Artigo em Inglês | MEDLINE | ID: mdl-33804091

RESUMO

BACKGROUND: The aim of the study was to investigate the effect of a simulated heat-wave on the labour productivity and physiological strain experienced by workers. METHODS: Seven males were confined for ten days in controlled ambient conditions. A familiarisation day was followed by three (pre, during, and post-heat-wave) 3-day periods. During each day volunteers participated in a simulated work-shift incorporating two physical activity sessions each followed by a session of assembly line task. Conditions were hot (work: 35.4 °C; rest: 26.3 °C) during, and temperate (work: 25.4 °C; rest: 22.3 °C) pre and post the simulated heat-wave. Physiological, biological, behavioural, and subjective data were collected throughout the study. RESULTS: The simulated heat-wave undermined human capacity for work by increasing the number of mistakes committed, time spent on unplanned breaks, and the physiological strain experienced by the participants. Early adaptations were able to mitigate the observed implications on the second and third days of the heat-wave, as well as impacting positively on the post-heat-wave period. CONCLUSIONS: Here, we show for first time that a controlled simulated heat-wave increases workers' physiological strain and reduces labour productivity on the first day, but it promotes adaptations mitigating the observed implications during the subsequent days.


Assuntos
Transtornos de Estresse por Calor , Temperatura Alta , Temperatura Corporal , Eficiência , Frequência Cardíaca , Humanos , Masculino
9.
J Sci Med Sport ; 24(8): 747-755, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33757698

RESUMO

OBJECTIVES: To provide perspectives from the HEAT-SHIELD project (www.heat-shield.eu): a multi-national, inter-sectoral, and cross-disciplinary initiative, incorporating twenty European research institutions, as well as occupational health and industrial partners, on solutions to combat negative health and productivity effects caused by working on a warmer world. METHODS: In this invited review, we focus on the theoretical and methodological advancements developed to combat occupational heat stress during the last five years of operation. RESULTS: We outline how we created climate forecast models to incorporate humidity, wind and solar radiation to the traditional temperature-based climate projections, providing the basis for timely, policy-relevant, industry-specific and individualized information. Further, we summarise the industry-specific guidelines we developed regarding technical and biophysical cooling solutions considering effectiveness, cost, sustainability, and the practical implementation potential in outdoor and indoor settings, in addition to field-testing of selected solutions with time-motion analyses and biophysical evaluations. All recommendations were adjusted following feedback from workshops with employers, employees, safety officers, and adjacent stakeholders such as local or national health policy makers. The cross-scientific approach was also used for providing policy-relevant information based on socioeconomic analyses and identification of vulnerable regions considered to be more relevant for political actions than average continental recommendations and interventions. DISCUSSION: From the HEAT-SHIELD experiences developed within European settings, we discuss how this inter-sectoral approach may be adopted or translated into actionable knowledge across continents where workers and societies are affected by escalating environmental temperatures.


Assuntos
Mudança Climática , Transtornos de Estresse por Calor/prevenção & controle , Temperatura Alta , Colaboração Intersetorial , Doenças Profissionais/prevenção & controle , Medicina do Trabalho/organização & administração , Europa (Continente) , Humanos , Disseminação de Informação , Comunicação Interdisciplinar , Saúde Ocupacional , Política Organizacional , Participação dos Interessados
10.
Aerosp Med Hum Perform ; 92(4): 248-256, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33752788

RESUMO

BACKGROUND: The study investigated the heat strain of personnel operating in the rear cabin of a helicopter during desert-climate missions, and to what extent the strain can be mitigated by use of battery-driven ventilation vests.METHODS: Eight men undertook 3-h simulated flight missions in desert conditions (45C, 10% humidity, solar radiation). Each subject participated in three conditions wearing helicopter flight equipment, including body armor, and either: a ventilation vest with a 3-dimensional mesh (Vent-1), a ventilation vest with a foam sheet incorporating channels to direct the air flow (Vent-2), or a T-shirt (NoVent); each mission comprised a 10-min walk, followed by sitting for 30 min, kneeling on a vibration platform for 2 h, and finally 30 min of sitting. Core temperature, heart rate, skin temperatures and heat flux, oxygen uptake, sweating rate, and subjective ratings were recorded. Evaporative capacity and thermal resistance of the garments were determined using a thermal manikin.RESULTS: All subjects completed the NoVent and Vent-1 conditions, whereas in the Vent-2 condition, one subject finished prematurely due to heat exhaustion. The increase in core temperature was significantly (P 0.01) greater in Novent (0.93C) and Vent-2 (0.88C) than in Vent-1 (0.61C). Evaporative capacity was significantly higher for Vent-1 (7.8 g min1) than for NoVent (4.1 g min1) and Vent-2 (4.4 g min1).DISCUSSION: Helicopter personnel may be at risk of heat exhaustion during desert missions. The risk can be reduced by use of a ventilation vest. However, the cooling efficacy of ventilation vests differs substantially depending on their design and ventilation concept.Grönkvist M, Mekjavic I, Ciuha U, Eiken O. Heat strain with two different ventilation vests during a simulated 3-hour helicopter desert mission. Aerosp Med Hum Perform. 2021; 92(4):248256.


Assuntos
Temperatura Corporal , Temperatura Alta , Aeronaves , Regulação da Temperatura Corporal , Humanos , Masculino , Roupa de Proteção , Temperatura Cutânea
11.
Ergonomics ; 64(5): 625-639, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33222661

RESUMO

As frequency and severity of heat waves are increasing, personal cooling systems are being considered as a tool to mitigate heat strain in workers in various occupational settings. This study assessed cooling capacities (C; W·h·m-2) of various commercially available vests using different cooling concepts. Measurements were conducted over 8 h in a climatic chamber (Ta: 35 °C, RH: 35 %) using a thermal manikin (Ts: 35 °C). Cooling power (P) and duration of efficient cooling (tc) determined the C value of each vest. Among the cooling concepts the active cooling vests were the most efficient, extracting 331 W·h·m-2, followed by the vests with phase change material (PCM) inserts, hybrid and evaporative vests, extracting a maximum of 164 W·h·m-2, 146 W·h·m-2 and 113 W·h·m-2, respectively. While some vests with PCM inserts provided intense but shorter cooling, evaporative vests provided mild but longer cooling throughout. Practitioner summary: The study assessed the cooling capacity of commercially available vests, using a thermal manikin. The vests present an affordable solution in various occupational settings where air-conditioning is not an option. A range of cooling capacities among different cooling concepts and vests of the same category were noted. Abbreviations: ACVs: air-cooled vests; LCVs: liquid-cooled vests; ECVs: evaporative cooling vests; HCVs: hybrid cooling vests; PCVs: phase-change cooling vests; PCM: phase change material; C: cooling capacity; Rt: thermal resistance; Re: evaporative resistance; Re (%): relative evaporative resistance; P: cooling power; Pmax: maximal cooling power; Pavg: average cooling power; tc: cooling duration; AUC: area under the curve; Ta: ambient temperature; RH: relative humidity; va: chamber air flow; Ts: manikin surface temperature.


Assuntos
Regulação da Temperatura Corporal , Roupa de Proteção , Temperatura Baixa , Temperatura Alta , Humanos , Temperatura
12.
J Therm Biol ; 91: 102602, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32716857

RESUMO

Exercise heat acclimation (HA) is known to magnify the sweating response by virtue of a lower threshold as well as increased gain and maximal capacity of sweating. However, HA has been shown to potentiate the shivering response in a cold-air environment. We investigated whether HA would alter heat loss and heat production responses during water immersion. Twelve healthy male participants underwent a 10-day HA protocol comprising daily 90-min controlled-hyperthermia (target rectal temperature, Tre 38.5 °C) exercise sessions. Preceding and following HA, the participants performed a maximal exercise test in thermoneutral conditions (ambient temperature 23 °C, relative humidity 50%) and were, following exercise, immersed in 28 °C water for 60 min. Thermal comfort zone (TCZ) was also assessed with participants regulating the temperature of a water-perfused suit during heating and cooling. Baseline pre-immersion Tre was similar pre- and post-HA (pre: 38.33 ± 0.33 °C vs post: 38.12 ± 0.36 °C, p = 0.092). The Tre cooling rate was identical pre-to post-HA (-0.03 ± 0.01 °C·min-1, p = 0.31), as was the vasomotor response reflected in the forearm-fingertip temperature difference. Shivering thresholds (p = 0.43) and gains (p = 0.61) were not affected by HA. TCZ was established at similar temperatures, with the magnitude in regulated water temperature being 7.6 (16.3) °C pre-HA and 5.1 (24.7) °C post-HA (p = 0.65). The present findings suggest that heat production and heat loss responses during whole body cooling as well as the skin thermal comfort zone remained unaltered by a controlled-hyperthermia HA protocol.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Estremecimento , Termotolerância , Adulto , Humanos , Masculino , Condicionamento Físico Humano/métodos , Temperatura Cutânea
13.
Int J Biometeorol ; 64(7): 1221-1231, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32193595

RESUMO

Seasonal variations in day length and light intensity can affect the circadian rhythm as well as some characteristics of temperature regulation. We investigated characteristics of autonomic (ATR), behavioural (BTR) and nocturnal (NTR) temperature regulation during spring and autumn. Eleven participants underwent experiments in both seasons. To assess ATR, participants performed a 30-min bout of submaximal upright exercise on a cycle ergometer, followed by 100 min of water immersion (28 °C). Thresholds for the onset of shivering and sweating and vasomotor response were measured. BTR was assessed using a water-perfused suit, with participants regulating the water-perfused suit temperature (Twps) within a range, considered as thermally comfortable. The Twps changed in a saw-tooth manner from 10 to 50 °C; by depressing a switch, the direction of the Twps changed, and this limit defined the thermal comfort zone (TCZ) for each participant. A 24-h proximal (calf)-distal (toe) skin temperature gradient (∆Tc-t) was measured to assess NTR. Initiation of vasomotor tone, shivering and sweating was similar between trials. Width of the TCZ was 8.1 °C in spring and 8.6 °C in autumn (p = 0.1), with similar upper and lower regulated temperatures. ∆Tc-t exhibited a typical circadian rhythm with no difference between seasons. Minor changes in skin temperature and oxygen consumption (p Ë‚ 0.05) between the seasons may indicate a degree of seasonal adaptation over the course of winter and summer, which persisted in spring and autumn. Other factors, such as country, race, sex and age could however modify the outcome of the study.


Assuntos
Regulação da Temperatura Corporal , Temperatura Cutânea , Humanos , Estações do Ano , Sudorese , Temperatura
14.
Physiol Rep ; 8(3): e14355, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32061183

RESUMO

Moderate-intensity exercise sessions are incorporated into heat-acclimation and hypoxic-training protocols to improve performance in hot and hypoxic environments, respectively. Consequently, a training effect might contribute to aerobic performance gains, at least in less fit participants. To explore the interaction between fitness level and a training stimulus commonly applied during acclimation protocols, we recruited 10 young males of a higher (more fit-MF, peak aerobic power [VO2peak ]: 57.9 [6.2] ml·kg-1 ·min-1 ) and 10 of a lower (less fit-LF, VO2peak : 41.7 [5.0] ml·kg-1 ·min-1 ) fitness level. They underwent 10 daily exercise sessions (60 min@50% peak power output [Wpeak ]) in thermoneutral conditions. The participants performed exercise testing on a cycle ergometer before and after the training period in normoxic (NOR), hypoxic (13.5% Fi O2 ; HYP), and hot (35°C, 50% RH; HE) conditions in a randomized and counterbalanced order. Each test consisted of two stages; a steady-state exercise (30 min@40% NOR Wpeak to evaluate thermoregulatory function) followed by incremental exercise to exhaustion. VO2peak increased by 9.2 (8.5)% (p = .024) and 10.2 (15.4)% (p = .037) only in the LF group in NOR and HE, respectively. Wpeak increases were correlated with baseline values in NOR (r = -.58, p = .010) and HYP (r = -.52, p = .018). MF individuals improved gross mechanical efficiency in HYP. Peak sweat rate increased in both groups in HE, whereas MF participants activated the forehead sweating response at lower rectal temperatures post-training. In conclusion, an increase in VO2peak but not mechanical efficiency seems probable in LF males after a 10-day moderate-exercise training protocol.


Assuntos
Regulação da Temperatura Corporal , Consumo de Oxigênio , Condicionamento Físico Humano/métodos , Aptidão Física , Aclimatação , Adolescente , Adulto , Humanos , Masculino , Distribuição Aleatória
15.
Eur J Appl Physiol ; 119(11-12): 2513-2527, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31555926

RESUMO

PURPOSE: Hypoxic acclimation enhances convective oxygen delivery to the muscles. Heat acclimation-elicited thermoregulatory benefits have been suggested not to be negated by adding daily exposure to hypoxia. Whether concomitant acclimation to both heat and hypoxia offers a synergistic enhancement of aerobic performance in thermoneutral or hot conditions remains unresolved. METHODS: Eight young males ([Formula: see text]: 51.6 ± 4.6 mL min-1 kg-1) underwent a 10-day normobaric hypoxic confinement (FiO2 = 0.14) interspersed with daily 90-min normoxic controlled hyperthermia (target rectal temperature: 38.5 °C) exercise sessions. Prior to, and following the confinement, the participants conducted a 30-min steady-state exercise followed by incremental exercise to exhaustion on a cycle ergometer in thermoneutral normoxic (NOR), thermoneutral hypoxic (FiO2 = 0.14; HYP) and hot (35 °C, 50% relative humidity; HE) conditions in a randomized and counterbalanced order. The steady-state exercise was performed at 40% NOR peak power output (Wpeak) to evaluate thermoregulatory function. Blood samples were obtained from an antecubital vein before, on days 1 and 10, and the first day post-acclimation. RESULTS: [Formula: see text] and ventilatory thresholds were not modified in any environment following acclimation. Wpeak increased by 6.3 ± 3.4% in NOR and 4.0 ± 4.9% in HE, respectively. The magnitude and gain of the forehead sweating response were augmented in HE post-acclimation. EPO increased from baseline (17.8 ± 7.0 mIU mL-1) by 10.7 ± 8.8 mIU mL-1 on day 1 but returned to baseline levels by day 10 (15.7 ± 5.9 mIU mL-1). DISCUSSION: A 10-day combined heat and hypoxic acclimation conferred only minor benefits in aerobic performance and thermoregulation in thermoneutral or hot conditions. Thus, adoption of such a protocol does not seem warranted.


Assuntos
Aclimatação/fisiologia , Regulação da Temperatura Corporal/fisiologia , Exercício Físico/fisiologia , Hipóxia/fisiopatologia , Frequência Cardíaca/fisiologia , Temperatura Alta , Humanos , Hipóxia/metabolismo , Masculino , Substâncias para Melhoria do Desempenho/metabolismo , Sudorese/fisiologia
16.
Physiol Behav ; 210: 112623, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31325511

RESUMO

INTRODUCTION: The present study tested the hypothesis that at any given ambient temperature (Ta), thermal comfort (TC) is not only a function of the temperature per se, but is also influenced by the temperatures rate of change and direction. METHODS: Twelve healthy young (age: 23 ±â€¯3) male participants completed experimental trials where Ta increased from 15° to 40 °C (heating) and then decreased from 40 to 15 °C (cooling). In one trial (FAST), the rate of change in Ta was maintained at 1 °C.min-1, and in the other (SLOW) at 0.5 °C.min-1. During each trial participants provided ratings of TC at 3-min intervals to determine their thermal comfort zone (TCZ). RESULTS: In the FAST trial, participants identified TCZ at an Ta between 22 ±â€¯4 and 30 ±â€¯4 °C during heating and between 25 ±â€¯3 and 33 ±â€¯3 °C during cooling phase (p = .003), and in the SLOW trial between 21 ±â€¯3 and 33 ±â€¯4 °C during heating and between 23 ±â€¯4 and 34 ±â€¯3 °C during cooling phase (p = .012). During the heating phase TCZ was established at a lower range of Ta, compared to cooling phase. The difference between the heating and cooling phases in preferred range of Ta was more pronounced in the FAST compared to SLOW trial. CONCLUSION: TCZ is influenced not only by the prevailing temperature, but also by the direction and the rate of the change in Ta. Faster changes in Ta (1 °C.min-1) established the TCZ at a higher Ta during cooling and at a lower Ta during heating phase.


Assuntos
Temperatura , Adulto , Temperatura Baixa , Feminino , Temperatura Alta , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Sensação Térmica , Redução de Peso , Adulto Jovem
17.
Exp Physiol ; 104(3): 345-358, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30536521

RESUMO

NEW FINDINGS: What is the central question of this study? Controlled-hyperthermia heat-acclimation protocols induce an array of thermoregulatory and cardiovascular adaptations that facilitate exercise in hot conditions. We investigated whether this ergogenic potential can be transferred to thermoneutral normoxic or hypoxic exercise conditions. What is the main finding and its importance? We showed that heat acclimation did not affect maximal cardiac output or maximal aerobic power in thermoneutral normoxic or hypoxic conditions. Heat acclimation augmented the sweating response in thermoneutral normoxic conditions. The cross-adaptation theory, according to which heat acclimation could facilitate hypoxic exercise capacity, is not supported by our data. ABSTRACT: Heat acclimation (HA) mitigates heat-induced decrements in maximal aerobic power ( V ̇ O 2 peak ) and augments exercise thermoregulatory responses in the heat. Whether this beneficial effect of HA is observed in hypoxic or thermoneutral conditions remains unresolved. We explored the effects of HA on cardiorespiratory and thermoregulatory responses to exercise in normoxic, hypoxic and hot conditions. Twelve men [ V ̇ O 2 peak 54.7(standard deviation 5.7) ml kg-1 min-1 ] participated in a HA protocol consisting of 10 daily 90-min controlled-hyperthermia (target rectal temperature, Tre  = 38.5°C) exercise sessions. Before and after HA, we determined V ̇ O 2 peak in thermoneutral normoxic (NOR), thermoneutral hypoxic (fractional inspired O2  = 13.5%; HYP) and hot (35°C, 50% relative humidity; HE) conditions in a randomized and counterbalanced order. Preceding each maximal cycling test, a 30-min steady-state exercise bout at 40% of the NOR peak power output was used to evaluate thermoregulatory responses. Heat acclimation induced the expected adaptations in HE: reduced Tre and submaximal heart rate, enhanced sweating response and expanded plasma volume. However, HA did not affect V ̇ O 2 peak or maximal cardiac output (P = 0.61). The peak power output was increased post-HA in NOR (P < 0.001) and HE (P < 0.001) by 41 ± 21 and 26 ± 22 W, respectively, but not in HYP (P = 0.14). Gross mechanical efficiency was higher (P = 0.004), whereas resting Tre and sweating thresholds were lower (P < 0.01) post-HA across environments. Nevertheless, the gain of the sweating response decreased (P = 0.05) in HYP. In conclusion, our data do not support a beneficial cross-over effect of HA on V ̇ O 2 peak in normoxic or hypoxic conditions.


Assuntos
Aclimatação/fisiologia , Exercício Físico/fisiologia , Hipóxia/fisiopatologia , Adaptação Biológica/fisiologia , Adulto , Temperatura Alta , Humanos , Masculino , Adulto Jovem
18.
J Appl Physiol (1985) ; 125(4): 1284-1295, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30048206

RESUMO

We examined the effects of acclimatization to normobaric hypoxia on aerobic performance and exercise thermoregulatory responses under normoxic, hypoxic, and hot conditions. Twelve men performed tests of maximal oxygen uptake (V̇O2max) in normoxic (NOR), hypoxic [HYP; 13.5% fraction of inspired oxygen (FiO2)], and hot (HE; 35°C, 50% relative humidity) conditions in a randomized manner before and after a 10-day continuous normobaric hypoxic exposure [FiO2 = 13.65 (0.35)%, inspired partial pressure of oxygen = 87 (3) mmHg]. The acclimatization protocol included daily exercise [60 min at 50% hypoxia-specific peak power output (Wpeak)]. All maximal tests were preceded by a steady-state exercise (30 min at 40% Wpeak) to assess the sweating response. Hematological data were assessed from venous blood samples obtained before and after acclimatization. V̇o2max increased by 10.7% (P = 0.002) and 7.9% (P = 0.03) from pre-acclimatization to post acclimatization in NOR and HE, respectively, whereas no differences were found in HYP [pre: 39.9 (3.8) vs. post: 39.4 (5.1) ml·kg-1·min-1, P = 1.0]. However, the increase in V̇O2max did not translate into increased Wpeak in either NOR or HE. Maximal heart rate and ventilation remained unchanged following acclimatization. Νo differences were noted in the sweating gain and thresholds independent of the acclimatization or environmental conditions. Hypoxic acclimatization markedly increased hemoglobin (P < 0.001), hematocrit (P < 0.001), and extracellular HSP72 (P = 0.01). These data suggest that 10 days of normobaric hypoxic acclimatization combined with moderate-intensity exercise training improves V̇o2max in NOR and HE, but does not seem to affect exercise performance or thermoregulatory responses in any of the tested environmental conditions.NEW & NOTEWORTHY The potential crossover effect of hypoxic acclimatization on performance in the heat remains unexplored. Here we show that 10-day continuous hypoxic acclimatization combined with moderate-intensity exercise training can increase maximal oxygen uptake in hot conditions.

19.
Int J Biometeorol ; 62(7): 1251-1264, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29600340

RESUMO

Climate change is expected to exacerbate heat stress at the workplace in temperate regions, such as Slovenia. It is therefore of paramount importance to study present and future summer heat conditions and analyze the impact of heat on workers. A set of climate indices based on summer mean (Tmean) and maximum (Tmax) air temperatures, such as the number of hot days (HD: Tmax above 30 °C), and Wet Bulb Globe Temperature (WBGT) were used to account for heat conditions in Slovenia at six locations in the period 1981-2010. Observed trends (1961-2011) of Tmean and Tmax in July were positive, being larger in the eastern part of the country. Climate change projections showed an increase up to 4.5 °C for mean temperature and 35 days for HD by the end of the twenty-first century under the high emission scenario. The increase in WBGT was smaller, although sufficiently high to increase the frequency of days with a high risk of heat stress up to an average of a third of the summer days. A case study performed at a Slovenian automobile parts manufacturing plant revealed non-optimal working conditions during summer 2016 (WBGT mainly between 20 and 25 °C). A survey conducted on 400 workers revealed that 96% perceived the temperature conditions as unsuitable, and 56% experienced headaches and fatigue. Given these conditions and climate change projections, the escalating problem of heat is worrisome. The European Commission initiated a program of research within the Horizon 2020 program to develop a heat warning system for European workers and employers, which will incorporate case-specific solutions to mitigate heat stress.


Assuntos
Transtornos de Estresse por Calor/complicações , Temperatura Alta , Eficiência , Humanos , Indústria Manufatureira , Exposição Ocupacional , Saúde Ocupacional , Eslovênia , Análise e Desempenho de Tarefas
20.
Physiol Behav ; 179: 427-433, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28712864

RESUMO

INTRODUCTION: The present study compared the thermal comfort zones (TCZ) of the hands, feet and head in eight male and eight female participants, assessed with water-perfused segments (WPS). METHODS: On separate occasions, and separated by a minimum of one day, participants were requested to regulate the temperature of three distal skin regions (hands, feet and head) within their TCZ. On each occasion they donned a specific water-perfused segment (WPS), either gloves, socks or hood for assessing the TCZ of the hands, feet and head, respectively. In the absence of regulation, the temperature of the water perfusing the WPS changed in a saw-tooth manner from 10 to 50°C; by depressing a switch and reversing the direction of the temperature at the limits of the TCZ, each participant defined the TCZ for each skin region investigated. RESULTS: The range of regulated temperatures (upper and lower limits of the TCZ) did not differ between studied skin regions or between genders. Participants however maintained higher head (35.7±0.4°C; p˂0.001) skin temperature (Tsk) compared to hands (34.5±0.8°C) and feet (33.8±1.1°C). CONCLUSIONS: When exposed to normothermic conditions, distal skin regions do not differ in ranges of temperatures, perceived as thermally comfortable.


Assuntos
, Mãos , Cabeça , Percepção/fisiologia , Caracteres Sexuais , Sensação Térmica/fisiologia , Adulto , Regulação da Temperatura Corporal/fisiologia , Feminino , Pé/fisiologia , Mãos/fisiologia , Cabeça/fisiologia , Humanos , Masculino , Reto/fisiologia , Temperatura Cutânea , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA