Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Dairy Sci ; 104(1): 588-601, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33131807

RESUMO

The enhanced availability of sequence data in livestock provides an opportunity for more accurate predictions in routine genomic evaluations. Such evaluations would therefore no longer rely only on the linkage disequilibrium between a chip marker and the causal mutation. The objective of this study was to assess the usefulness of sequence data in Saanen goats (n = 33) to better capture a quantitative trait locus (QTL) on chromosome 19 (CHI19) and improve the accuracy of predictions for 3 milk production traits, 5 type traits, and somatic cell scores. All 1,207 50K genotypes were imputed to the sequence level. Four scenarios, each using a subset of CHI19 imputed variants, were then tested. Sequence-derived information included all CHI19 variants (529,576), all variants in the QTL region (22,269), 178 variants selected in the QTL region and added to an updated chip, or 178 randomly selected variants on CHI19. Two genomic evaluation models were applied: single-step genomic BLUP and weighted single-step genomic BLUP. All scenarios were compared with single-step genomic BLUP using 50K genotypes. Best overall results were obtained using single-step genomic BLUP on 50K genotypes completed with all variants in the QTL region of chromosome 19 (6.2% average increase in accuracy for 9 traits) with the highest accuracy gain for fat yield (17.9%), significant increases for milk (13.7%) and protein yields (12.5%), and type traits associated with CHI19. Despite its association with the QTL region of chromosome 19, the somatic cell score showed decreased accuracy in every alternative scenario. Using all CHI19 variants led to an overall decrease of 4.8% in prediction accuracy. The updated chip was efficient and improved genomic evaluations by 3.1 to 6.4% on average, depending on the scenario. Indeed, information from only a few carefully selected variants increased accuracies for traits of interest when used in a single-step genomic BLUP model. In conclusion, using QTL region variants imputed from sequence data in single-step genomic evaluations represents a promising perspective for such evaluations in dairy goats. Furthermore, using only a limited number of selected variants in QTL regions, as available on SNP chip updates, significantly increases the accuracy for QTL-associated traits without deteriorating the evaluation accuracy for other traits. The latter approach is interesting, as it avoids time-consuming imputation and data formatting processes and provides reliable genotypes.


Assuntos
Variação Genética , Genômica , Cabras/genética , Locos de Características Quantitativas , Animais , Mapeamento Cromossômico/veterinária , Genômica/métodos , Genótipo , Desequilíbrio de Ligação , Leite/metabolismo , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
BMC Genet ; 21(1): 19, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32085723

RESUMO

BACKGROUND: Goats were domesticated 10,500 years ago to supply humans with useful resources. Since then, specialized breeds that are adapted to their local environment have been developed and display specific genetic profiles. The VarGoats project is a 1000 genomes resequencing program designed to cover the genetic diversity of the Capra genus. In this study, our main objective was to assess the use of sequence data to detect genomic regions associated with traits of interest in French Alpine and Saanen breeds. RESULTS: Direct imputation from the GoatSNP50 BeadChip genotypes to sequence level was investigated in these breeds using FImpute and different reference panels: within-breed, all Capra hircus sequenced individuals, European goats and French mainland goats. The best results were obtained with the French goat panel with allele and genotype concordance rates reaching 0.86 and 0.75 in the Alpine and 0.86 and 0.73 in the Saanen breed respectively. Mean correlations tended to be low in both breeds due to the high proportion of variants with low frequencies. For association analysis, imputation was performed using FImpute for 1129 French Alpine and Saanen males using within-breed and French panels on 23,338,436 filtered variants. The association results of both imputation scenarios were then compared. In Saanen goats, a large region on chromosome 19 was significantly linked to semen volume and milk yield in both scenarios. Significant variants for milk yield were annotated for 91 genes on chromosome 19 in Saanen goats. For semen volume, the annotated genes include YBOX2 which is related to azoospermia or oligospermia in other species. New signals for milk yield were detected on chromosome 2 in Alpine goats and on chromosome 5 in Saanen goats when using a multi-breed panel. CONCLUSION: Even with very small reference populations, an acceptable imputation quality can be achieved in French dairy goats. GWAS on imputed sequences confirmed the existence of QTLs and identified new regions of interest in dairy goats. Adding identified candidates to a genotyping array and sequencing more individuals might corroborate the involvement of identified regions while removing potential imputation errors.


Assuntos
Estudo de Associação Genômica Ampla , Genoma , Genômica , Cabras/genética , Leite , Fenótipo , Sêmen , Algoritmos , Animais , Ligação Genética , Genômica/métodos , Genótipo , Masculino , Modelos Genéticos , Locos de Características Quantitativas , Sequenciamento Completo do Genoma
3.
Physiol Rep ; 7(13): e14166, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31293098

RESUMO

Regular Finnish sauna bathing is associated with a reduced risk of all-cause and cardiovascular mortality in middle-aged and older adults. Potential acute physiological adaptations induced by sauna bathing that underlie this relationship remain to be fully elucidated. The purpose of this study was to determine if typical Finnish sauna sessions acutely improve brachial artery flow-mediated dilation (FMD) and reactive hyperemia (RH) in healthy middle-aged and older adults. Using a randomized crossover design, FMD and RH were evaluated in 21 healthy adults (66 ± 6 years, 10 men/11 women) before and after each of the following conditions: (1) 1 × 10 min of Finnish sauna bathing (80.2 ± 3.2°C, 23 ± 2% humidity); (2) 2 × 10 min of sauna bathing separated by 10 min of rest outside the sauna; (3) a time control period (10 min of seated rest outside the sauna). FMD was taken as the peak change from baseline in brachial artery diameter following 5 min of forearm ischemia, whereas RH was quantified as both peak and area-under-the-curve forearm vascular conductance postischemia. FMD was statistically similar pre to post 1 × 10 min (4.69 ± 2.46 to 5.41 ± 2.64%, P = 0.20) and 2 × 10 min of sauna bathing (4.16 ± 1.79 to 4.55 ± 2.14%, P = 0.58). Peak and area-under-the-curve forearm vascular conductance were also similar following both sauna interventions. These results suggest that typical Finnish sauna bathing sessions do not acutely improve brachial artery FMD and RH in healthy middle-aged and older adults.


Assuntos
Envelhecimento/fisiologia , Artéria Braquial/fisiologia , Hiperemia/fisiopatologia , Banho a Vapor/efeitos adversos , Vasodilatação , Idoso , Idoso de 80 Anos ou mais , Artéria Braquial/crescimento & desenvolvimento , Artéria Braquial/fisiopatologia , Feminino , Humanos , Hiperemia/etiologia , Masculino , Pessoa de Meia-Idade
4.
J Dairy Sci ; 101(6): 5214-5226, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29573797

RESUMO

Type traits and mammary health traits are important to dairy ruminant breeding because they influence animal health, milking ability, and longevity, as well as the economic sustainability of farms. The availability of the genomic sequence and a single nucleotide polymorphism chip in goats has opened up new fields of investigation to better understand the genes and mechanisms that underlie such complex traits and to be able to select them. Our objective was to perform a genome-wide association study in dairy goats for 11 type traits and somatic cell count (SCC) as proxies for mastitis resistance. A genome-wide association study was implemented using a daughter design composed of 1,941 Alpine and Saanen goats sired by 20 artificial insemination bucks, genotyped with the Illumina GoatSNP50 BeadChip (Illumina Inc., San Diego, CA). This association study was based on both linkage analyses and linkage disequilibrium using QTLmap software (http://dga7.jouy.inra.fr/qtlmap/) interval mapping was performed with the likelihood ratio test using linear regressions. Breeds were analyzed together and separately. The study highlighted 37 chromosome-wide significant quantitative trait loci (QTL) with linkage analyses and 222 genome-wide significant QTL for linkage disequilibrium, for type and SCC traits in dairy goats. Genomic control of those traits was mostly polygenic and breed-specific, suggesting that within-breed selection would be favored for those traits. Of note, Capra hircus autosome (CHI) 19 appeared to be highly enriched in single nucleotide polymorphisms associated with type and SCC, with 2 highly significant regions in the Saanen breed. One region (33-42 Mb) was significantly associated with SCC and includes candidate genes associated with response to intramammary infections (RARA, STAT3, STAT5A, and STAT5B). Another region of the CHI 19 (24.5-27 Mb) exhibited an adverse pleiotropic effect on milk production (milk, fat yield, and protein yield) and udder traits (udder floor position and rear udder attachment) that agreed with the negative genetic correlations that exist between those 2 groups of traits. These QTL were not found in the Alpine breed. In Alpine, the 2 most significant regions were associated with chest depth on CHI 6 (45.8-46.0 Mb) and CHI 8 (80.7-81.1 Mb). These results will be helpful for goat selection in the future and could lead to identification of causal mutations.


Assuntos
Cruzamento , Indústria de Laticínios/métodos , Estudo de Associação Genômica Ampla , Cabras/genética , Glândulas Mamárias Animais/fisiologia , Animais , Mapeamento Cromossômico , Feminino , Leite , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
5.
NMR Biomed ; 25(4): 506-13, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21796713

RESUMO

In the last decade, evidence has emerged indicating that the growth of a vast majority of tumors including gliomas is sustained by a subpopulation of cancer cells with stem cell properties called cancer initiating cells. These cells are able to initiate and propagate tumors and constitute only a fraction of all tumor cells. In the present study, we showed that intracerebral injection of cultured glioma-initiating cells into nude mice produced fast growing tumors showing necrosis and gadolinium enhancement in MR images, whereas gliomas produced by injecting freshly purified glioma-initiating cells grew slowly and showed no necrosis and very little gadolinium enhancement. Using proton localized spectroscopy at 14.1 Tesla, decreasing trends of N-acetylaspartate, glutamate and glucose concentrations and an increasing trend of glycine concentration were observed near the injection site after injecting cultured glioma-initiating cells. In contrast to the spectra of tumors grown from fresh cells, those from cultured cells showed intense peaks of lipids, increased absolute concentrations of glycine and choline-containing compounds, and decreased concentrations of glutamine, taurine and total creatine, when compared with a contralateral non-tumor-bearing brain tissue. A decrease in concentrations of N-acetylaspartate and γ-aminobutyrate was found in both tumor phenotypes after solid tumor formation. Further investigation is needed to determine the cause of the dissimilarities between the tumors grown from cultured glioma-initiating cells and those from freshly purified glioma-initiating cells, both derived from human glioblastomas.


Assuntos
Biomarcadores Tumorais/metabolismo , Glioma/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Proteínas de Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Glioma/patologia , Humanos , Taxa de Depuração Metabólica , Camundongos , Camundongos Nus , Prótons
6.
BMC Genet ; 12: 25, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21306617

RESUMO

BACKGROUND: Current research on quantitative genetics has provided efficient guidelines for the sustainable management of selected populations: genetic gain is maximized while the loss of genetic diversity is maintained at a reasonable rate. However, actual selection schemes are complex, especially for large domestic species, and they have to take into account many operational constraints. This paper deals with the actual selection of dairy goats where the challenge is to optimize diffusion of buck semen on the field. Three objectives are considered simultaneously: i) natural service buck replacement (NSR); ii) goat replacement (GR); iii) semen distribution of young bucks to be progeny-tested. An appropriate optimization method is developed, which involves five analytical steps. Solutions are obtained by simulated annealing and the corresponding algorithms are presented in detail. RESULTS: The whole procedure was tested on two French goat populations (Alpine and Saanen breeds) and the results presented in the abstract were based on the average of the two breeds. The procedure induced an immediate acceleration of genetic gain in comparison with the current annual genetic gain (0.15 genetic standard deviation unit), as shown by two facts. First, the genetic level of replacement natural service (NS) bucks was predicted, 1.5 years ahead at the moment of reproduction, to be equivalent to that of the progeny-tested bucks in service, born from the current breeding scheme. Second, the genetic level of replacement goats was much higher than that of their dams (0.86 unit), which represented 6 years of selection, although dams were only 3 years older than their replacement daughters. This improved genetic gain could be achieved while decreasing inbreeding coefficients substantially. Inbreeding coefficients (%) of NS bucks was lower than that of the progeny-tested bucks (-0.17). Goats were also less inbred than their dams (-0.67). CONCLUSIONS: It was possible to account for complex operational constraints while developing goat selection schemes, both efficient and sustainable. Therefore, the recommended selection and mating decisions might receive attention from goat breeders using both AI and NS.


Assuntos
Cruzamento/métodos , Variação Genética , Cabras/genética , Sêmen , Animais , Indústria de Laticínios , Masculino
7.
J Biol Chem ; 285(17): 13092-106, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20177072

RESUMO

Carriers of mutations in the cell cycle checkpoint protein kinase ataxia telangiectasia mutated (ATM), which represent 1-2% of the general population, have an increased risk of breast cancer. However, experimental evidence that ATM deficiency contributes to human breast carcinogenesis is lacking. We report here that in MCF-10A and MCF-12A cells, which are well established normal human mammary gland epithelial cell models, partial or almost complete stable ATM silencing or pharmacological inhibition resulted in cellular transformation, genomic instability, and formation of dysplastic lesions in NOD/SCID mice. These effects did not require the activity of exogenous DNA-damaging agents and were preceded by an unsuspected and striking increase in cell proliferation also observed in primary human mammary gland epithelial cells. Increased proliferation correlated with a dramatic, transient, and proteasome-dependent reduction of p21(WAF1/CIP1) and p27(KIP1) protein levels, whereas little or no effect was observed on p21(WAF1/CIP1) or p27(KIP1) mRNAs. p21(WAF1/CIP1) silencing also increased MCF-10A cell proliferation, thus identifying p21(WAF1/CIP1) down-regulation as a mediator of the proliferative effect of ATM inhibition. Our findings provide the first experimental evidence that ATM is a human breast tumor suppressor. In addition, they mirror the sensitivity of ATM tumor suppressor function and unveil a new mechanism by which ATM might prevent human breast tumorigenesis, namely a direct inhibitory effect on the basal proliferation of normal mammary epithelial cells.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Transformação Celular Neoplásica/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Inativação Gênica , Glândulas Mamárias Humanas/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/prevenção & controle , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27 , Proteínas de Ligação a DNA/genética , Regulação para Baixo/genética , Células Epiteliais/patologia , Feminino , Instabilidade Genômica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glândulas Mamárias Humanas/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética
8.
Nat Methods ; 7(3): 224-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20173750

RESUMO

Tumor-initiating cells with stem cell properties are believed to sustain the growth of gliomas, but proposed markers such as CD133 cannot be used to identify these cells with sufficient specificity. We report an alternative isolation method purely based on phenotypic qualities of glioma-initiating cells (GICs), avoiding the use of molecular markers. We exploited intrinsic autofluorescence properties and a distinctive morphology to isolate a subpopulation of cells (FL1(+)) from human glioma or glioma cultures. FL1(+) cells are capable of self-renewal in vitro, tumorigenesis in vivo and preferentially express stem cell genes. The FL1(+) phenotype did not correlate with the expression of proposed GIC markers. Our data propose an alternative approach to investigate tumor-initiating potential in gliomas and to advance the development of new therapies and diagnostics.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Encefálicas/patologia , Glioma/patologia , Células-Tronco Neoplásicas/patologia , Antígeno AC133 , Animais , Antígenos CD/análise , Diferenciação Celular , Células Cultivadas , Fluorescência , Perfilação da Expressão Gênica , Glicoproteínas/análise , Humanos , Camundongos , Peptídeos/análise
9.
Cancer Res ; 69(24): 9211-8, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19934320

RESUMO

Overexpression of the polycomb group protein enhancer of zeste homologue 2 (EZH2) occurs in diverse malignancies, including prostate cancer, breast cancer, and glioblastoma multiforme (GBM). Based on its ability to modulate transcription of key genes implicated in cell cycle control, DNA repair, and cell differentiation, EZH2 is believed to play a crucial role in tissue-specific stem cell maintenance and tumor development. Here, we show that targeted pharmacologic disruption of EZH2 by the S-adenosylhomocysteine hydrolase inhibitor 3-deazaneplanocin A (DZNep), or its specific downregulation by short hairpin RNA (shRNA), strongly impairs GBM cancer stem cell (CSC) self-renewal in vitro and tumor-initiating capacity in vivo. Using genome-wide expression analysis of DZNep-treated GBM CSCs, we found the expression of c-myc, recently reported to be essential for GBM CSCs, to be strongly repressed upon EZH2 depletion. Specific shRNA-mediated downregulation of EZH2 in combination with chromatin immunoprecipitation experiments revealed that c-myc is a direct target of EZH2 in GBM CSCs. Taken together, our observations provide evidence that direct transcriptional regulation of c-myc by EZH2 may constitute a novel mechanism underlying GBM CSC maintenance and suggest that EZH2 may be a valuable new therapeutic target for GBM management.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição/biossíntese , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes myc , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Complexo Repressor Polycomb 2 , RNA Interferente Pequeno/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética
10.
Int J Cancer ; 125(1): 244-8, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19350631

RESUMO

In human gliomas, self-renewing and tumor-initiating cells are characterized by the expression marker CD133. Although, widely used, the validity of CD133 is debated as recent data show that CD133(+) and CD133(-) cells share similar stemness and tumorigenic properties. To clarify this "CD133 controversy", we reexamined the methods of purification and the stem behavior of both CD133 compartments in fresh gliomas and gliomasphere cultures. Using human anti-CD133-coupled microbeads and magnetic activated cell sorting, we observed a nonspecific sorting of glioma cells irrespective of their CD133 expression. In contrast, when purified by fluorescence activating cell sorting, a specific expression and enrichment of CD133 was successfully observed in fresh human gliomas and gliomasphere cultures. However, neither the expression of stemness genes nor the long-term self-renewal capacities of CD133(+) and CD133(-) cells were significantly different, even after fresh isolation. Altogether, our data show that purification of CD133(+) glioma cells using hCD133-microbeads presents a lack of specificity and demonstrate that the use of CD133 as a unique glioma stem cell marker is likely not sufficient to tag the whole self-renewing tumor cell reservoir.


Assuntos
Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Glicoproteínas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Peptídeos/metabolismo , Antígeno AC133 , Neoplasias Encefálicas/patologia , Separação Celular , Citometria de Fluxo , Glioma/patologia , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Cancer Res ; 69(5): 1776-81, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19208848

RESUMO

Cancer stem cells that display tumor-initiating properties have recently been identified in several distinct types of malignancies, holding promise for more effective therapeutic strategies. However, evidence of such cells in sarcomas, which include some of the most aggressive and therapy-resistant tumors, has not been shown to date. Here, we identify and characterize cancer stem cells in Ewing's sarcoma family tumors (ESFT), a highly aggressive pediatric malignancy believed to be of mesenchymal stem cell (MSC) origin. Using magnetic bead cell separation of primary ESFT, we have isolated a subpopulation of CD133+ tumor cells that display the capacity to initiate and sustain tumor growth through serial transplantation in nonobese diabetic/severe combined immunodeficiency mice, re-establishing at each in vivo passage the parental tumor phenotype and hierarchical cell organization. Consistent with the plasticity of MSCs, in vitro differentiation assays showed that the CD133+ cell population retained the ability to differentiate along adipogenic, osteogenic, and chondrogenic lineages. Quantitative real-time PCR analysis of genes implicated in stem cell maintenance revealed that CD133+ ESFT cells express significantly higher levels of OCT4 and NANOG than their CD133- counterparts. Taken together, our observations provide the first identification of ESFT cancer stem cells and demonstration of their MSC properties, a critical step towards a better biological understanding and rational therapeutic targeting of these tumors.


Assuntos
Neoplasias Ósseas/patologia , Separação Imunomagnética/métodos , Células-Tronco Neoplásicas/patologia , Sarcoma de Ewing/patologia , Antígeno AC133 , Animais , Antígenos CD/análise , Linhagem Celular Tumoral , Glicoproteínas/análise , Humanos , Camundongos , Peptídeos/análise
12.
Genet Sel Evol ; 40(2): 145-59, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18298932

RESUMO

A procedure to measure connectedness among groups in large-sized genetic evaluations is presented. It consists of two steps: (a) computing coefficients of determination (CD) of comparisons among groups of animals; and (b) building sets of connected groups. The CD of comparisons were estimated using a sampling-based method that estimates empirical variances of true and predicted breeding values from a simulated n-sample. A clustering method that may handle a large number of comparisons and build compact clusters of connected groups was developed. An aggregation criterion (Caco) that reflects the level of connectedness of each herd was computed. This procedure was validated using a small beef data set. It was applied to the French genetic evaluation of the beef breed with most records and to the genetic evaluation of goats. Caco was more related to the type of service of sires used in the herds than to herd size. It was very sensitive to the percentage of missing sires. Disconnected herds were reliably identified by low values of Caco. In France, this procedure is the reference method for evaluating connectedness among the herds involved in on-farm genetic evaluation of beef cattle (IBOVAL) since 2002 and for genetic evaluation of goats from 2007 onwards.


Assuntos
Bovinos/genética , Cabras/genética , Hereditariedade/genética , Seleção Genética , Animais , Cruzamento , Modelos Lineares , Reprodutibilidade dos Testes
13.
Proc Natl Acad Sci U S A ; 104(14): 5895-900, 2007 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-17392427

RESUMO

Melanoma is one of the most aggressive cancers, and its incidence is increasing. These tumors derive from the melanocyte lineage and remain incurable after metastasis. Here we report that SONIC HEDGEHOG (SHH)-GLI signaling is active in the matrix of human hair follicles, and that it is required for the normal proliferation of human melanocytes in culture. SHH-GLI signaling also regulates the proliferation and survival of human melanomas: the growth, recurrence, and metastasis of melanoma xenografts in mice are prevented by local or systemic interference of HH-GLI function. Moreover, we show that oncogenic RAS-induced melanomas in transgenic mice express Gli1 and require Hh-Gli signaling in vitro and in vivo. Finally, we provide evidence that endogenous RAS-MEK and AKT signaling regulate the nuclear localization and transcriptional activity of GLI1 in melanoma and other cancer cells. Our data uncover an unsuspected role of HH-GLI signaling in melanocytes and melanomas, demonstrate a role for this pathway in RAS-induced tumors, suggest a general integration of the RAS/AKT and HH-GLI pathways, and open a therapeutic approach for human melanomas.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/fisiologia , Melanoma/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/fisiologia , Animais , Células COS , Proliferação de Células , Células Cultivadas , Chlorocebus aethiops , Fibroblastos/metabolismo , Prepúcio do Pênis/citologia , Humanos , Masculino , Melanócitos/metabolismo , Melanócitos/fisiologia , Melanoma/genética , Melanoma/fisiopatologia , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/fisiopatologia , Camundongos , Camundongos Nus , Camundongos Transgênicos , Modelos Biológicos , Transplante de Neoplasias , Transdução de Sinais , Transplante Heterólogo , Proteína GLI1 em Dedos de Zinco
14.
DNA Repair (Amst) ; 6(5): 602-14, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17208056

RESUMO

Mildly affected individuals from xeroderma pigmentosum complementation group G (XP-G) possess single amino acid substitutions in the XPG protein that adversely affects its 3' endonuclease function in nucleotide excision repair. More serious mutations in the XPG gene generate truncated or unstable XPG proteins and result in a particularly early and severe form of the combined XP/CS complex. Following UV irradiation, cells from such XP-G/CS patients enter apoptosis more readily than other DNA repair-deficient cells. Here, we explore the mechanisms by which UV triggers the apoptotic cell death program in XP-G and XP-G/CS primary fibroblasts. Activation of the CD95 signalling pathway occurs within minutes and it is the earliest detectable post-UV event in such cells. This is rapidly followed by activation of caspase-8 then caspase-3. Several hours later caspase-9 becomes activated and the mitochondrial membrane potential drops, but without any obvious prior release of cytochrome c. Although p53 accumulates in XPG-deficient cells after UV irradiation, use of RNA interference demonstrates that p53 is not required for their UV-induced apoptotic response. p53 ablation of wild-type fibroblasts reduces MDM2 mRNA levels, inhibits accumulation of the 90kDa/92kDa Mdm2 isoforms, and prevents the nuclear relocalisation of Mdm2 after UV treatment. The same post-UV effects occur in XPG-deficient cells that express normal p53 levels. These results emphasise the importance of the extrinsic apoptotic pathway and aberrant Mdm2 events for the severe UV-induced apoptosis of XPG-deficient primary fibroblasts. XP-G/CS cells constitutively overexpress the pro-apoptotic Bax protein and a long isoform of the E2F1 transcription factor that controls S phase entry, which may prime them to enter apoptosis very readily after UV irradiation.


Assuntos
Apoptose/efeitos da radiação , Caspase 3/metabolismo , Caspase 9/metabolismo , Proteínas de Ligação a DNA/fisiologia , Endonucleases/fisiologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta , Receptor fas/metabolismo , Células Cultivadas , Reparo do DNA , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Fibroblastos/fisiologia , Fibroblastos/efeitos da radiação , Humanos , Potencial da Membrana Mitocondrial , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Proteína Supressora de Tumor p53/genética
15.
Curr Biol ; 17(2): 165-72, 2007 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-17196391

RESUMO

Cancer stem cells are rare tumor cells characterized by their ability to self-renew and to induce tumorigenesis. They are present in gliomas and may be responsible for the lethality of these incurable brain tumors. In the most aggressive and invasive type, glioblastoma multiforme (GBM), an average of about one year spans the period between detection and death [1]. The resistence of gliomas to current therapies may be related to the existence of cancer stem cells [2-6]. We find that human gliomas display a stemness signature and demonstrate that HEDGEHOG (HH)-GLI signaling regulates the expression of stemness genes in and the self-renewal of CD133(+) glioma cancer stem cells. HH-GLI signaling is also required for sustained glioma growth and survival. It displays additive and synergistic effects with temozolomide (TMZ), the current chemotherapeutic agent of choice. TMZ, however, does not block glioma stem cell self-renewal. Finally, interference of HH-GLI signaling with cyclopamine or through lentiviral-mediated silencing demonstrates that the tumorigenicity of human gliomas in mice requires an active pathway. Our results reveal the essential role of HH-GLI signaling in controlling the behavior of human glioma cancer stem cells and offer new therapeutic possibilities.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Glioma/fisiopatologia , Proteínas Hedgehog/fisiologia , Células-Tronco Neoplásicas/fisiologia , Fatores de Transcrição/fisiologia , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Transdução de Sinais/fisiologia , Proteína GLI1 em Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA