Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genet ; 21(Suppl 2): 136, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339505

RESUMO

BACKGROUND: Anastrepha fraterculus sp. 1 is considered a quarantine pest in several American countries. Since chemical control applied in an integrated pest management program is the only strategy utilized against this pest, the development of pesticide-free methods, such as the Sterile Insect Technique, is being considered. The search for genes involved in sex-determination and differentiation, and in metabolic pathways associated with communication and mating behaviour, contributes with key information to the development of genetic control strategies. The aims of this work were to perform a comprehensive analysis of A. fraterculus sp. 1 transcriptome and to obtain an initial evaluation of genes associated with main metabolic pathways by the expression analysis of specific transcripts identified in embryos and adults. RESULTS: Sexually mature adults of both sexes and 72 h embryos were considered for transcriptome analysis. The de novo transcriptome assembly was fairly complete (62.9% complete BUSCO orthologs detected) with a total of 86,925 transcripts assembled and 28,756 GO annotated sequences. Paired-comparisons between libraries showed 319 transcripts differently expressed between embryos and females, 1242 between embryos and males, and 464 between sexes. Using this information and genes searches based on published studies from other tephritid species, we evaluated a set of transcripts involved in development, courtship and metabolic pathways. The qPCR analysis evidenced that the early genes serendipity alpha and transformer-2 displayed similar expression levels in the analyzed stages, while heat shock protein 27 is over-expressed in embryos and females in comparison to males. The expression of genes associated with courtship (takeout-like, odorant-binding protein 50a1) differed between males and females, independently of their reproductive status (virgin vs mated individuals). Genes associated with metabolic pathways (maltase 2-like, androgen-induced gene 1) showed differential expression between embryos and adults. Furthermore, 14,262 microsatellite motifs were identified, with 11,208 transcripts containing at least one simple sequence repeat, including 48% of di/trinucleotide motifs. CONCLUSION: Our results significantly expand the available gene space of A. fraterculus sp. 1, contributing with a fairly complete transcript database of embryos and adults. The expression analysis of the selected candidate genes, along with a set of microsatellite markers, provides a valuable resource for further genetic characterization of A. fraterculus sp. 1 and supports the development of specific genetic control strategies.


Assuntos
Comportamento Sexual Animal , Tephritidae/genética , Transcriptoma , Animais , Embrião não Mamífero , Feminino , Masculino , Repetições de Microssatélites , RNA-Seq , Reprodução , Tephritidae/embriologia
2.
BMC Genet ; 21(Suppl 2): 149, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339514

RESUMO

BACKGROUND: Anastrepha fraterculus is recognized as a quarantine pest in several American countries. This fruit fly species is native to the American continent and distributed throughout tropical and subtropical regions. It has been reported as a complex of cryptic species, and at least eight morphotypes have been described. Only one entity of this complex, formerly named Anastrepha fraterculus sp. 1, is present in Argentina. Previous cytogenetic studies on this morphotype described the presence of sex chromosome variation identified by chromosomal size and staining patterns. In this work, we expanded the cytological study of this morphotype by analyzing laboratory strains and wild populations to provide information about the frequency and geographic distribution of these sex chromosome variants. We analyzed the mitotic metaphases of individuals from four laboratory strains and five wild populations from the main fruit-producing areas of Argentina, including the northwest (Tucumán and La Rioja), northeast (Entre Ríos and Misiones), and center (Buenos Aires) of the country. RESULTS: In wild samples, we observed a high frequency of X1X1 (0.94) and X1Y5 (0.93) karyomorphs, whereas X1X2 and X1Y6 were exclusively found at a low frequency in Buenos Aires (0.07 and 0.13, respectively), Entre Ríos (0.16 and 0.14, respectively) and Tucumán (0.03 and 0.04, respectively). X2X2 and X2Y5 karyomorphs were not found in wild populations but were detected at a low frequency in laboratory strains. In fact, karyomorph frequencies differed between wild populations and laboratory strains. No significant differences among A. fraterculus wild populations were evidenced in either karyotypic or chromosomal frequencies. However, a significant correlation was observed between Y5 chromosomal frequency and latitude. CONCLUSIONS: We discuss the importance of cytogenetics to understand the possible route of invasion and dispersion of this pest in Argentina and the evolutionary forces acting under laboratory conditions, possibly driving changes in the chromosomal frequencies. Our findings provide deep and integral genetic knowledge of this species, which has become of relevance to the characterization and selection of valuable A. fraterculus sp. 1 strains for mass rearing production and SIT implementation.


Assuntos
Cromossomos de Insetos/genética , Genética Populacional , Polimorfismo Genético , Cromossomos Sexuais/genética , Tephritidae/genética , Animais , Argentina , Feminino , Geografia , Cariotipagem , Masculino
3.
BMC Microbiol ; 19(Suppl 1): 289, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870290

RESUMO

BACKGROUND: Wolbachia, one of the most abundant taxa of intracellular Alphaproteobacteria, is widespread among arthropods and filarial nematodes. The presence of these maternally inherited bacteria is associated with modifications of host fitness, including a variety of reproductive abnormalities, such as cytoplasmic incompatibility, thelytokous parthenogenesis, host feminization and male-killing. Wolbachia has attracted much interest for its role in biological, ecological and evolutionary processes as well as for its potential use in novel and environmentally-friendly strategies for the control of insect pests and disease vectors including a major agricultural pest, the South American fruit fly, Anastrepha fraterculus Wiedemann (Diptera: Tephritidae). RESULTS: We used wsp, 16S rRNA and a multilocus sequence typing (MLST) scheme including gatB, coxA, hcpA, fbpA, and ftsZ genes to detect and characterize the Wolbachia infection in laboratory strains and wild populations of A. fraterculus from Argentina. Wolbachia was found in all A. fraterculus individuals studied. Nucleotide sequences analysis of wsp gene allowed the identification of two Wolbachia nucleotide variants (named wAfraCast1_A and wAfraCast2_A). After the analysis of 76 individuals, a high prevalence of the wAfraCast2_A variant was found both, in laboratory (82%) and wild populations (95%). MLST analysis identified both Wolbachia genetic variants as sequence type 13. Phylogenetic analysis of concatenated MLST datasets clustered wAfraCast1/2_A in the supergroup A. Paired-crossing experiments among single infected laboratory strains showed a phenotype specifically associated to wAfraCast1_A that includes slight detrimental effects on larval survival, a female-biased sex ratio; suggesting the induction of male-killing phenomena, and a decreased proportion of females producing descendants that appears attributable to the lack of sperm in their spermathecae. CONCLUSIONS: We detected and characterized at the molecular level two wsp gene sequence variants of Wolbachia both in laboratory and wild populations of A. fraterculus sp.1 from Argentina. Crossing experiments on singly-infected A. fraterculus strains showed evidence of a male killing-like mechanism potentially associated to the wAfraCast1_A - A. fraterculus interactions. Further mating experiments including antibiotic treatments and the analysis of early and late immature stages of descendants will contribute to our understanding of the phenotypes elicited by the Wolbachia variant wAfraCast1_A in A. fraterculus sp.1.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Tephritidae/microbiologia , Wolbachia/fisiologia , Animais , Feminino , Masculino , Tipagem de Sequências Multilocus , Filogenia , Razão de Masculinidade , Comportamento Sexual Animal , Wolbachia/genética
4.
BMC Microbiol ; 19(Suppl 1): 283, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870309

RESUMO

BACKGROUND: The interaction between gut bacterial symbionts and Tephritidae became the focus of several studies that showed that bacteria contributed to the nutritional status and the reproductive potential of its fruit fly hosts. Anastrepha fraterculus is an economically important fruit pest in South America. This pest is currently controlled by insecticides, which prompt the development of environmentally friendly methods such as the sterile insect technique (SIT). For SIT to be effective, a deep understanding of the biology and sexual behavior of the target species is needed. Although many studies have contributed in this direction, little is known about the composition and role of A. fraterculus symbiotic bacteria. In this study we tested the hypothesis that gut bacteria contribute to nutritional status and reproductive success of A. fraterculus males. RESULTS: AB affected the bacterial community of the digestive tract of A. fraterculus, in particular bacteria belonging to the Enterobacteriaceae family, which was the dominant bacterial group in the control flies (i.e., non-treated with AB). AB negatively affected parameters directly related to the mating success of laboratory males and their nutritional status. AB also affected males' survival under starvation conditions. The effect of AB on the behaviour and nutritional status of the males depended on two additional factors: the origin of the males and the presence of a proteinaceous source in the diet. CONCLUSIONS: Our results suggest that A. fraterculus males gut contain symbiotic organisms that are able to exert a positive contribution on A. fraterculus males' fitness, although the physiological mechanisms still need further studies.


Assuntos
Antibacterianos/farmacologia , Bactérias/classificação , Comportamento Sexual Animal/efeitos dos fármacos , Tephritidae/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Estado Nutricional , Controle Biológico de Vetores , Filogenia , América do Sul , Tephritidae/efeitos dos fármacos , Tephritidae/microbiologia
5.
J Insect Sci ; 10: 56, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20569133

RESUMO

The morphological changes experienced during the immature stages of the solitary parasitoid Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae: Opiinae) were studied. This natural enemy of several species of tephritid fruit flies is widely used in biological control strategies. Immature stages are poorly understood in endoparasitoids because they exist within the host. In the present work, developmental processes are described for this species, reared in Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) larvae under controlled environmental conditions. At 25 degrees C, 85% RH, and with an 18:6 L:D photoperiod, preimaginal development takes about 16 days. Five preimaginal stages can be described: egg, three larval instars, prepupa, pupa, and pharate adult. Superparasitism was found in 20% of the host pupae, and the number of oviposition scars was positively correlated with the number of parasitoid larvae per host puparium. The results are compared and discussed with previous studies on related species.


Assuntos
Tephritidae/parasitologia , Vespas/crescimento & desenvolvimento , Vespas/fisiologia , Animais , Feminino , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Óvulo/fisiologia , Pupa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA