RESUMO
Breast cancer is most common in women, and in most cases there is no evidence of spread and the primary tumor is removed, resulting in a 'cure'. However, in 10% to 30% of these women, distant metastases recur after years to decades. This is due to breast cancer cells disseminating to distant organs and lying quiescent. This is called metastatic dormancy. Dormant cells are generally resistant to chemotherapy, hormone therapy and immunotherapy as they are non-cycling and receive survival signals from their microenvironment. In this state, they are clinically irrelevant. However, risk factors, including aging and inflammation can awaken dormant cells and cause breast cancer recurrences, which may happen even more than ten years after the primary tumor removal. How these breast cancer cells remain in dormancy is being unraveled. A key element appears to be the mesenchymal stem cells in the bone marrow that have been shown to promote breast cancer metastatic dormancy in recent studies. Indirect co-culture, direct co-culture and exosome extraction were conducted to investigate the modes of signal operation. Multiple signaling molecules act in this process including both protein factors and microRNAs. We integrate these studies to summarize current findings and gaps in the field and suggest future research directions for this field.
Assuntos
Neoplasias da Mama , Exossomos , Células-Tronco Mesenquimais , Metástase Neoplásica , Transdução de Sinais , Humanos , Exossomos/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Células-Tronco Mesenquimais/metabolismo , Microambiente Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , AnimaisRESUMO
Despite decades of research into metastatic disease, our knowledge of the mechanisms governing dormancy are still limited. Unraveling the process will aid in developing effective therapies to either maintain or eliminate these dormant cells and thus prevent them from emerging into overt metastatic disease. To study the behavior of dormant tumor cells-mechanisms that promote, maintain, and disrupt this state-we utilize the Legacy LiverChip®, an all-human ex vivo hepatic microphysiological system. This complex, bioengineered system is able to recreate metastatic disease that is reflective of the human situation and is among only a handful of systems able to mimic spontaneous tumor cell dormancy. The dormant subpopulation reflects the defining traits of cellular dormancy-survival in a foreign microenvironment, chemoresistance, and reversible growth arrest. This microphysiological system has and continues to provide critical insights into the biology of dormant tumor cells. It also serves as an accessible tool to identify new therapeutic strategies targeting dormancy and concurrently evaluate the efficacy of therapeutic agents as well as their metabolism and dose-limiting toxicity.
Assuntos
Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Linhagem Celular Tumoral , Técnicas de Cultura de Células/métodosRESUMO
Alternative splicing (AS) contributes to the biological heterogeneity between species, sexes, tissues, and cell types. Many diseases are either caused by alterations in AS or by alterations to AS. Therefore, measuring AS accurately and efficiently is critical for assessing molecular phenotypes, including those associated with disease. Long-read sequencing enables more accurate quantification of differentially spliced isoform expression than short-read sequencing approaches, and third-generation platforms facilitate high-throughput experiments. To assess differences in AS across the cerebellum, cortex, hippocampus, and striatum by sex, we generated and analyzed Oxford Nanopore Technologies (ONT) long-read RNA sequencing (lrRNA-Seq) C57BL/6J mouse brain cDNA libraries. From > 85 million reads that passed quality control metrics, we calculated differential gene expression (DGE), differential transcript expression (DTE), and differential transcript usage (DTU) across brain regions and by sex. We found significant DGE, DTE, and DTU across brain regions and that the cerebellum had the most differences compared to the other three regions. Additionally, we found region-specific differential splicing between sexes, with the most sex differences in DTU in the cortex and no DTU in the hippocampus. We also report on two distinct patterns of sex DTU we observed, sex-divergent and sex-specific, that could potentially help explain sex differences in the prevalence and prognosis of various neurological and psychiatric disorders in future studies. Finally, we built a Shiny web application for researchers to explore the data further. Our study provides a resource for the community; it underscores the importance of AS in biological heterogeneity and the utility of long-read sequencing to better understand AS in the brain.
Assuntos
Encéfalo , Camundongos Endogâmicos C57BL , RNA Mensageiro , Análise de Sequência de RNA , Caracteres Sexuais , Animais , Masculino , Encéfalo/metabolismo , Feminino , Análise de Sequência de RNA/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Processamento Alternativo/genética , Isoformas de RNA/genética , Especificidade de Órgãos/genética , Camundongos , Perfilação da Expressão GênicaRESUMO
BACKGROUND: Alzheimer's disease is the most common cause of dementia and is characterized by amyloid-ß plaques, tau neurofibrillary tangles, and neuronal loss. Although neuronal loss is a primary hallmark of Alzheimer's disease, it is known that non-neuronal cell populations are ultimately responsible for maintaining brain homeostasis and neuronal health through neuron-glia and glial cell crosstalk. Many signaling pathways have been proposed to be dysregulated in Alzheimer's disease, including WNT, TGFß, p53, mTOR, NFkB, and Pi3k/Akt signaling. Here, we predict altered cell-cell communication between glia and neurons. METHODS: Using public snRNA-sequencing data generated from postmortem human prefrontal cortex, we predicted altered cell-cell communication between glia (astrocytes, microglia, oligodendrocytes, and oligodendrocyte progenitor cells) and neurons (excitatory and inhibitory). We confirmed interactions in a second and third independent orthogonal dataset. We determined cell-type-specificity using Jaccard Similarity Index and investigated the downstream effects of altered interactions in inhibitory neurons through gene expression and transcription factor activity analyses of signaling mediators. Finally, we determined changes in pathway activity in inhibitory neurons. RESULTS: Cell-cell communication between glia and neurons is altered in Alzheimer's disease in a cell-type-specific manner. As expected, ligands are more cell-type-specific than receptors and targets. We identified ligand-receptor pairs in three independent datasets and found involvement of the Alzheimer's disease risk genes APP and APOE across datasets. Most of the signaling mediators of these interactions were not significantly differentially expressed, however, the mediators that are also transcription factors had differential activity between AD and control. Namely, MYC and TP53, which are associated with WNT and p53 signaling, respectively, had decreased TF activity in Alzheimer's disease, along with decreased WNT and p53 pathway activity in inhibitory neurons. Additionally, inhibitory neurons had both increased NFkB signaling pathway activity and increased TF activity of NFIL3, an NFkB signaling-associated transcription factor. CONCLUSIONS: Cell-cell communication between glia and neurons in Alzheimer's disease is altered in a cell-type-specific manner involving Alzheimer's disease risk genes. Signaling mediators had altered transcription factor activity suggesting altered glia-neuron interactions may dysregulate signaling pathways including WNT, p53, and NFkB in inhibitory neurons.
Assuntos
Doença de Alzheimer , NF-kappa B , Neuroglia , Neurônios , Proteína Supressora de Tumor p53 , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Humanos , Neurônios/metabolismo , Neurônios/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , NF-kappa B/metabolismo , Transdução de Sinais , Comunicação Celular/genética , Via de Sinalização WntRESUMO
Alzheimer's disease (AD) is the most common form of dementia and is characterized by progressive memory loss and cognitive decline, affecting behavior, speech, and motor abilities. The neuropathology of AD includes the formation of extracellular amyloid-ß plaque and intracellular neurofibrillary tangles of phosphorylated tau, along with neuronal loss. While neuronal loss is an AD hallmark, cell-cell communication between neuronal and non-neuronal cell populations maintains neuronal health and brain homeostasis. To study changes in cellcell communication during disease progression, we performed snRNA-sequencing of the hippocampus from female 3xTg-AD and wild-type littermates at 6 and 12 months. We inferred differential cell-cell communication between 3xTg-AD and wild-type mice across time points and between senders (astrocytes, microglia, oligodendrocytes, and OPCs) and receivers (excitatory and inhibitory neurons) of interest. We also assessed the downstream effects of altered glia-neuron communication using pseudobulk differential gene expression, functional enrichment, and gene regulatory analyses. We found that glia-neuron communication is increasingly dysregulated in 12-month 3xTg-AD mice. We also identified 23 AD-associated ligand-receptor pairs that are upregulated in the 12-month-old 3xTg-AD hippocampus. Our results suggest increased AD association of interactions originating from microglia. Signaling mediators were not significantly differentially expressed but showed altered gene regulation and TF activity. Our findings indicate that altered glia-neuron communication is increasingly dysregulated and affects the gene regulatory mechanisms in neurons of 12-month-old 3xTg-AD mice.
RESUMO
Authors are often faced with the decision of whether to maximize traditional impact metrics or minimize costs when choosing where to publish the results of their research. Many subscription-based journals now offer the option of paying an article processing charge (APC) to make their work open. Though such "hybrid" journals make research more accessible to readers, their APCs often come with high price tags and can exclude authors who lack the capacity to pay to make their research accessible. Here, we tested if paying to publish open access in a subscription-based journal benefited authors by conferring more citations relative to closed access articles. We identified 146,415 articles published in 152 hybrid journals in the field of biology from 2013-2018 to compare the number of citations between various types of open access and closed access articles. In a simple generalized linear model analysis of our full dataset, we found that publishing open access in hybrid journals that offer the option confers an average citation advantage to authors of 17.8 citations compared to closed access articles in similar journals. After taking into account the number of authors, Journal Citation Reports 2020 Quartile, year of publication, and Web of Science category, we still found that open access generated significantly more citations than closed access (p < 0.0001). However, results were complex, with exact differences in citation rates among access types impacted by these other variables. This citation advantage based on access type was even similar when comparing open and closed access articles published in the same issue of a journal (p < 0.0001). However, by examining articles where the authors paid an article processing charge, we found that cost itself was not predictive of citation rates (p = 0.14). Based on our findings of access type and other model parameters, we suggest that, in the case of the 152 journals we analyzed, paying for open access does confer a citation advantage. For authors with limited budgets, we recommend pursuing open access alternatives that do not require paying a fee as they still yielded more citations than closed access. For authors who are considering where to submit their next article, we offer additional suggestions on how to balance exposure via citations with publishing costs.
Assuntos
Complexos Atriais Prematuros , Publicação de Acesso Aberto , Humanos , Salários e Benefícios , Benchmarking , BiologiaRESUMO
Drug repurposing is promising because approving a drug for a new indication requires fewer resources than approving a new drug. Signature reversion detects drug perturbations most inversely related to the disease-associated gene signature to identify drugs that may reverse that signature. We assessed the performance and biological relevance of three approaches for constructing disease-associated gene signatures (i.e., limma, DESeq2, and MultiPLIER) and prioritized the resulting drug repurposing candidates for four low-survival human cancers. Our results were enriched for candidates that had been used in clinical trials or performed well in the PRISM drug screen. Additionally, we found that pamidronate and nimodipine, drugs predicted to be efficacious against the brain tumor glioblastoma (GBM), inhibited the growth of a GBM cell line and cells isolated from a patient-derived xenograft (PDX). Our results demonstrate that by applying multiple disease-associated gene signature methods, we prioritized several drug repurposing candidates for low-survival cancers.
Assuntos
Antineoplásicos , Reposicionamento de Medicamentos , Reposicionamento de Medicamentos/métodos , Humanos , Antineoplásicos/farmacologia , Animais , Linhagem Celular Tumoral , Camundongos , Glioblastoma/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Perfilação da Expressão Gênica , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias/genética , Neoplasias/tratamento farmacológico , Transcriptoma/genética , Transcriptoma/efeitos dos fármacosRESUMO
Alternative splicing (AS) contributes to the biological heterogeneity between species, sexes, tissues, and cell types. Many diseases are either caused by alterations in AS or by alterations to AS. Therefore, measuring AS accurately and efficiently is critical for assessing molecular phenotypes, including those associated with disease. Long-read sequencing enables more accurate quantification of differentially spliced isoform expression than short-read sequencing approaches, and third-generation platforms facilitate high-throughput experiments. To assess differences in AS across the cerebellum, cortex, hippocampus, and striatum by sex, we generated and analyzed Oxford Nanopore Technologies (ONT) long-read RNA sequencing (lrRNA-Seq) C57BL/6J mouse brain cDNA libraries. From >85 million reads that passed quality control metrics, we calculated differential gene expression (DGE), differential transcript expression (DTE), and differential transcript usage (DTU) across brain regions and by sex. We found significant DGE, DTE, and DTU across brain regions and that the cerebellum had the most differences compared to the other three regions. Additionally, we found region-specific differential splicing between sexes, with the most sex differences in DTU in the cortex and no DTU in the hippocampus. We also report on two distinct patterns of sex DTU we observed, sex-divergent and sex-specific, that could potentially help explain sex differences in the prevalence and prognosis of various neurological and psychiatric disorders in future studies. Finally, we built a Shiny web application for researchers to explore the data further. Our study provides a resource for the community; it underscores the importance of AS in biological heterogeneity and the utility of long-read sequencing to better understand AS in the brain.
RESUMO
BACKGROUND: Previous pharmacovigilance studies and a retroactive review of cancer clinical trial studies identified that women were more likely to experience drug adverse events (i.e., any unintended effects of medication), and men were more likely to experience adverse events that resulted in hospitalization or death. These sex-biased adverse events (SBAEs) are due to many factors not entirely understood, including differences in body mass, hormones, pharmacokinetics, and liver drug metabolism enzymes and transporters. METHODS: We first identified drugs associated with SBAEs from the FDA Adverse Event Reporting System (FAERS) database. Next, we evaluated sex-specific gene expression of the known drug targets and metabolism enzymes for those SBAE-associated drugs. We also constructed sex-specific tissue gene-regulatory networks to determine if these known drug targets and metabolism enzymes from the SBAE-associated drugs had sex-specific gene-regulatory network properties and predicted regulatory relationships. RESULTS: We identified liver-specific gene-regulatory differences for drug metabolism genes between males and females, which could explain observed sex differences in pharmacokinetics and pharmacodynamics. In addition, we found that ~ 85% of SBAE-associated drug targets had sex-biased gene expression or were core genes of sex- and tissue-specific network communities, significantly higher than randomly selected drug targets. Lastly, we provide the sex-biased drug-adverse event pairs, drug targets, and drug metabolism enzymes as a resource for the research community. CONCLUSIONS: Overall, we provide evidence that many SBAEs are associated with drug targets and drug metabolism genes that are differentially expressed and regulated between males and females. These SBAE-associated drug metabolism enzymes and drug targets may be useful for future studies seeking to explain or predict SBAEs.
Assuntos
Regulação da Expressão Gênica , Fígado , Humanos , Masculino , Feminino , Fígado/metabolismo , Farmacovigilância , Expressão GênicaRESUMO
The SET binding protein 1 (SETBP1) gene encodes a transcription factor (TF) involved in various cellular processes. Variants in SETBP1 can result in three different diseases determined by the introduction (germline vs. somatic) and location of the variant. Germline variants cause the ultra-rare pediatric Schinzel Giedion Syndrome (SGS) and SETBP1 haploinsufficiency disorder (SETBP1-HD), characterized by severe multisystemic abnormalities with neurodegeneration or a less severe brain phenotype accompanied by hypotonia and strabismus, respectively. Somatic variants in SETBP1 are associated with hematological malignancies and cancer development in other tissues in adults. To better understand the tissue-specific mechanisms involving SETBP1, we analyzed publicly available RNA-sequencing (RNA-seq) data from the Genotype-Tissue Expression (GTEx) project. We found SETBP1 and its known target genes were widely expressed across 31 adult human tissues. K-means clustering identified three distinct expression patterns of SETBP1 targets across tissues. Functional enrichment analysis (FEA) of each cluster revealed gene sets related to transcriptional regulation, DNA binding, and mitochondrial function. TF activity analysis of SETBP1 and its target TFs revealed tissue-specific TF activity, underscoring the role of tissue context-driven regulation and suggesting its impact in SETBP1-associated disease. In addition to uncovering tissue-specific molecular signatures of SETBP1 expression and TF activity, we provide a Shiny web application to facilitate exploring TF activity across human tissues for 758 TFs. This study provides insight into the landscape of SETBP1 expression and TF activity across 31 non-diseased human tissues and reveals tissue-specific expression and activity of SETBP1 and its targets. In conjunction with the web application we constructed, our framework enables researchers to generate hypotheses related to the role tissue backgrounds play with respect to gene expression and TF activity in different disease contexts.
Assuntos
Proteínas de Transporte , Proteínas Nucleares , Humanos , Anormalidades Múltiplas/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Anormalidades Craniofaciais/genética , Expressão Gênica , Deficiência Intelectual/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
OBJECTIVE: Surveys of residents in obstetrics and gynecology, internal medicine, and family medicine have demonstrated low levels of knowledge and comfort in treating patients with menopausal symptoms, suggesting a need for improved training during residency. To address this problem, we used a flipped classroom design to deliver a novel menopause curriculum for medical residents. The curriculum included six podcast episodes followed by an interactive case-based classroom session. We then assessed effects of the curriculum on the residents' knowledge and preparedness to manage menopause symptoms. METHODS: We targeted 200 residents (43 obstetrics and gynecology, 86 internal medicine, and 71 family medicine) from six residency programs from 2019 to 2020. Of these, 115 (58%) completed both pre- and postcurriculum assessments, including a 15-item knowledge test and self-ratings of their knowledge, comfort, and preparedness to manage menopause. RESULTS: Following the curriculum, the proportion of correctly answered knowledge questions rose from 60.8% to 79.1% (+18.3%; 95% confidence interval, 15.4-21.2; Cohen's d = 1.2). Improvement did not significantly differ by specialty or year of residency. There were higher gains for residents who listened to the entirety of all six podcast episodes ( b = 11.4, P < 0.001) and who attended the classroom session ( b = 11.6, P = 0.003). Residents' self-ratings of knowledge, comfort, and preparedness also improved following the curriculum across all medical specialties (Cohen's d = 0.47-1.2). Residents rated the podcast format as convenient (73%) and effective (65%) compared with an equivalent amount of reading. CONCLUSIONS: Pairing a podcast with a classroom discussion was found to be an effective combination for improving menopause knowledge.
Assuntos
Ginecologia , Internato e Residência , Obstetrícia , Feminino , Gravidez , Humanos , Competência Clínica , Ginecologia/educação , Currículo , Obstetrícia/educação , MenopausaRESUMO
Scientific information is incomplete regarding the genitourinary syndrome of menopause. Both the lower genital and urinary tracts are rich in receptors for reproductive hormones and are highly susceptible to waning ovarian hormones at menopause. Symptoms of dryness and pain emerge in late perimenopause, but they can also result earlier from cancer therapies or bilateral oophorectomy. Lower urinary tract symptoms rise in prevalence at midlife and increase further with advancing age. Because ovarian senescence is typically followed by years of aging, some postmenopausal complaints may be attributable to increasing longevity.
Assuntos
Hormônios , Menopausa , Feminino , Humanos , Diagnóstico Diferencial , Menopausa/fisiologiaRESUMO
Background: Alzheimer's disease is the most common cause of dementia and is characterized by amyloid-ß plaques, tau neurofibrillary tangles, and neuronal loss. Although neuronal loss is a primary hallmark of Alzheimer's disease, it is known that non-neuronal cell populations are ultimately responsible for maintaining brain homeostasis and neuronal health through neuron-glia and glial cell crosstalk. Many signaling pathways have been proposed to be dysregulated in Alzheimer's disease, including WNT, TGFß, p53, mTOR, NFkB, and Pi3k/Akt signaling. Here, we predict altered cell-cell communication between glia and neurons. Methods: Using public snRNA-sequencing data generated from postmortem human prefrontal cortex, we predicted altered cell-cell communication between glia (astrocytes, microglia, oligodendrocytes, and oligodendrocyte progenitor cells) and neurons (excitatory and inhibitory). We confirmed interactions in an independent orthogonal dataset. We determined cell-type-specificity using Jaccard Similarity Index and investigated the downstream effects of altered interactions in inhibitory neurons through gene expression and transcription factor activity analyses of signaling mediators. Finally, we determined changes in pathway activity in inhibitory neurons. Results: Cell-cell communication between glia and neurons is altered in Alzheimer's disease in a cell-type-specific manner. As expected, ligands are more cell-type-specific than receptors and targets. We validated 51 ligand-receptor pairs in an independent dataset that included two known Alzheimer's disease risk genes: APP and APOE. 17 (14 upregulated and 3 downregulated in Alzheimer's disease) of the 51 interactions also had the same downstream target gene. Most of the signaling mediators of these interactions were not differentially expressed, however, the mediators that are also transcription factors had differential activity between AD and control. Namely, MYC and TP53, which are associated with WNT and p53 signaling, respectively, had repressor activity in Alzheimer's disease, along with decreased WNT and p53 activity in inhibitory neurons. Additionally, inhibitory neurons had both increased NFkB signaling pathway activity and activator activity of NFIL3, an NFkB signaling-associated transcription factor. Conclusions: Cell-cell communication between glia and neurons in Alzheimer's disease is altered in a cell-type-specific manner involving Alzheimer's disease risk genes. Signaling mediators had altered transcription factor activity suggesting altered glia-neuron interactions may dysregulate signaling pathways including WNT, p53, and NFkB in inhibitory neurons.
RESUMO
SUMMARY: High-throughput sequencing technologies have enabled cross-species comparative transcriptomic studies; however, there are numerous challenges for these studies due to biological and technical factors. We developed CoSIA (Cross-Species Investigation and Analysis), a Bioconductor R package and Shiny app that provides an alternative framework for cross-species transcriptomic comparison of non-diseased wild-type RNA sequencing gene expression data from Bgee across tissues and species (human, mouse, rat, zebrafish, fly, and nematode) through visualization of variability, diversity, and specificity metrics. AVAILABILITY AND IMPLEMENTATION: https://github.com/lasseignelab/CoSIA.
Assuntos
Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Software , Animais , Humanos , Camundongos , Ratos , Análise de Sequência de RNA , Peixe-Zebra , Drosophila , Caenorhabditis elegansRESUMO
Background: The SET binding protein 1 (SETBP1) gene encodes a transcription factor (TF) involved in various cellular processes. Distinct SETBP1 variants have been linked to three different diseases. Germline variants cause the ultra-rare pediatric Schinzel Giedion Syndrome (SGS) and SETBP1 haploinsufficiency disorder (SETBP1-HD), characterized by severe multisystemic abnormalities with neurodegeneration or a less severe brain phenotype accompanied by hypotonia and strabismus, respectively. Somatic variants in SETBP1 are associated with hematological malignancies and cancer development in other tissues in adults. Results: To better understand the tissue-specific mechanisms involving SETBP1, we analyzed publicly available RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project. We found SETBP1, and its known target genes were widely expressed across 31 adult human tissues. K-means clustering identified three distinct expression patterns of SETBP1 targets across tissues. Functional enrichment analysis (FEA) of each cluster revealed gene sets related to transcription regulation, DNA binding, and mitochondrial function. TF activity analysis of SETBP1 and its target TFs revealed tissue-specific TF activity, underscoring the role of tissue context-driven regulation and suggesting its impact in SETBP1-associated disease. In addition to uncovering tissue-specific molecular signatures of SETBP1 expression and TF activity, we provide a Shiny web application to facilitate exploring TF activity across human tissues for 758 TFs. Conclusions: This study provides insight into the landscape of SETBP1 expression and TF activity across 31 non-diseased human tissues and reveals tissue-specific expression and activity of SETBP1 and its targets. In conjunction with the web application we constructed, our framework enables researchers to generate hypotheses related to the role tissue backgrounds play with respect to gene expression and TF activity in different disease contexts.
RESUMO
Nicotinamide adenine dinucleotide (NAD+) levels decline in experimental models of acute kidney injury (AKI). Attenuated enzymatic conversion of tryptophan to NAD+ in tubular epithelium may contribute to adverse cellular and physiological outcomes. Mechanisms underlying defense of tryptophan-dependent NAD+ production are incompletely understood. Here we show that regulation of a bottleneck enzyme in this pathway, quinolinate phosphoribosyltransferase (QPRT) may contribute to kidney resilience. Expression of QPRT declined in two unrelated models of AKI. Haploinsufficient mice developed worse outcomes compared to littermate controls whereas novel, conditional gain-of-function mice were protected from injury. Applying these findings, we then identified hepatocyte nuclear factor 4 alpha (HNF4α) as a candidate transcription factor regulating QPRT expression downstream of the mitochondrial biogenesis regulator and NAD+ biosynthesis inducer PPARgamma coactivator-1-alpha (PGC1α). This was verified by chromatin immunoprecipitation. A PGC1α - HNF4α -QPRT axis controlled NAD+ levels across cellular compartments and modulated cellular ATP. These results propose that tryptophan-dependent NAD+ biosynthesis via QPRT and induced by HNF4α may be a critical determinant of kidney resilience to noxious stressors.
Assuntos
Injúria Renal Aguda , Ácido Quinolínico , Animais , Camundongos , Injúria Renal Aguda/genética , Fatores Nucleares de Hepatócito , Rim , NAD , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , TriptofanoRESUMO
Traditional biology curricula depict science as an objective field, overlooking the important influence that human values and biases have on what is studied and who can be a scientist. We can work to address this shortcoming by incorporating ideological awareness into the curriculum, which is an understanding of biases, stereotypes, and assumptions that shape contemporary and historical science. We surveyed a national sample of lower-level biology instructors to determine 1) why it is important for students to learn science, 2) the perceived educational value of ideological awareness in the classroom, and 3) hesitancies associated with ideological awareness implementation. We found that most instructors reported "understanding the world" as the main goal of science education. Despite the perceived value of ideological awareness, such as increasing student engagement and dispelling misconceptions, instructors were hesitant to implement ideological awareness modules due to potential personal and professional consequences.
Assuntos
Currículo , Estudantes , Humanos , Aprendizagem , Medo , Biologia/educaçãoRESUMO
Background: Previous pharmacovigilance studies and a retroactive review of cancer clinical trial studies identified that women were more likely to experience drug adverse events (i.e., any unintended effects of medication), and men were more likely to experience adverse events that resulted in hospitalization or death. These sex-biased adverse events (SBAEs) are due to many factors not entirely understood, including differences in body mass, hormones, pharmacokinetics, and liver drug metabolism enzymes and transporters. Methods: We first identified drugs associated with SBAEs from the FDA Adverse Event Reporting System (FAERS) database. Next, we evaluated sex-specific gene expression of the known drug targets and metabolism enzymes for those SBAE-associated drugs. We also constructed sex-specific tissue gene-regulatory networks to determine if these known drug targets and metabolism enzymes from the SBAE-associated drugs had sex-specific gene-regulatory network properties and predicted regulatory relationships. Results: We identified liver-specific gene-regulatory differences for drug metabolism genes between males and females, which could explain observed sex differences in pharmacokinetics and pharmacodynamics. In addition, we found that ~85% of SBAE-associated drug targets had sex-biased gene expression or were core genes of sex- and tissue-specific network communities, significantly higher than randomly selected drug targets. Lastly, we provide the sex-biased drug-adverse event pairs, drug targets, and drug metabolism enzymes as a resource for the research community. Conclusions: Overall, we provide evidence that many SBAEs are associated with drug targets and drug metabolism genes that are differentially expressed and regulated between males and females. These SBAE-associated drug metabolism enzymes and drug targets may be useful for future studies seeking to explain or predict SBAEs.