Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Evol Appl ; 17(1): e13648, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38293268

RESUMO

The genetic architecture of phenotypic traits can affect the mode and tempo of trait evolution. Human-altered environments can impose strong natural selection, where successful evolutionary adaptation requires swift and large phenotypic shifts. In these scenarios, theory predicts that adaptation is due to a few adaptive variants of large effect, but empirical studies that have revealed the genetic architecture of rapidly evolved phenotypes are rare, especially for populations inhabiting polluted environments. Fundulus killifish have repeatedly evolved adaptive resistance to extreme pollution in urban estuaries. Prior studies, including genome scans for signatures of natural selection, have revealed some of the genes and pathways important for evolved pollution resistance, and provide context for the genotype-phenotype association studies reported here. We created multiple quantitative trait locus (QTL) mapping families using progenitors from four different resistant populations, and using RAD-seq genetically mapped variation in sensitivity (developmental perturbations) following embryonic exposure to a model toxicant PCB-126. We found that one to two large-effect QTL loci accounted for resistance to PCB-mediated developmental toxicity. QTLs harbored candidate genes that govern the regulation of aryl hydrocarbon receptor (AHR) signaling. One QTL locus was shared across all populations and another was shared across three populations. One QTL locus showed strong signatures of recent natural selection in the corresponding wild population but another QTL locus did not. Some candidate genes for PCB resistance inferred from genome scans in wild populations were identified as QTL, but some key candidate genes were not. We conclude that rapidly evolved resistance to the developmental defects normally caused by PCB-126 is governed by few genes of large effect. However, other aspects of resistance beyond developmental phenotypes may be governed by additional loci, such that comprehensive resistance to PCB-126, and to the mixtures of chemicals that distinguish urban estuaries more broadly, may be more genetically complex.

2.
Environ Toxicol Chem ; 42(9): 2040-2053, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37232404

RESUMO

A core challenge for ecological risk assessment is to integrate molecular responses into a chain of causality to organismal or population-level outcomes. Bioenergetic theory may be a useful approach for integrating suborganismal responses to predict organismal responses that influence population dynamics. We describe a novel application of dynamic energy budget (DEB) theory in the context of a toxicity framework (adverse outcome pathways [AOPs]) to make quantitative predictions of chemical exposures to individuals, starting from suborganismal data. We use early-life stage exposure of Fundulus heteroclitus to dioxin-like chemicals (DLCs) and connect AOP key events to DEB processes through "damage" that is produced at a rate proportional to the internal toxicant concentration. We use transcriptomic data of fish embryos exposed to DLCs to translate molecular indicators of damage into changes in DEB parameters (damage increases somatic maintenance costs) and DEB models to predict sublethal and lethal effects on young fish. By changing a small subset of model parameters, we predict the evolved tolerance to DLCs in some wild F. heteroclitus populations, a data set not used in model parameterization. The differences in model parameters point to reduced sensitivity and altered damage repair dynamics as contributing to this evolved resistance. Our methodology has potential extrapolation to untested chemicals of ecological concern. Environ Toxicol Chem 2023;42:2040-2053. © 2023 Oak Ridge National Laboratory and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Rotas de Resultados Adversos , Dioxinas , Fundulidae , Dibenzodioxinas Policloradas , Animais , Dioxinas/toxicidade , Fundulidae/fisiologia , Dibenzodioxinas Policloradas/toxicidade , Metabolismo Energético
3.
bioRxiv ; 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37066319

RESUMO

The genetic architecture of phenotypic traits can affect the mode and tempo of trait evolution. Human-altered environments can impose strong natural selection, where successful evolutionary adaptation requires swift and large phenotypic shifts. In these scenarios, theory predicts the influence of few adaptive variants of large effect, but empirical studies that have revealed the genetic architecture of rapidly evolved phenotypes are rare, especially for populations inhabiting polluted environments. Fundulus killifish have repeatedly evolved adaptive resistance to extreme pollution in urban estuaries. Prior studies, including genome scans for signatures of natural selection, have revealed some of the genes and pathways important for evolved pollution resistance, and provide context for the genotype-phenotype association studies reported here. We created multiple quantitative trait locus (QTL) mapping families using progenitors from four different resistant populations, and genetically mapped variation in sensitivity (developmental perturbations) following embryonic exposure to a model toxicant PCB-126. We found that a few large-effect QTL loci accounted for resistance to PCB-mediated developmental toxicity. QTLs harbored candidate genes that govern the regulation of aryl hydrocarbon receptor (AHR) signaling, where some (but not all) of these QTL loci were shared across all populations, and some (but not all) of these loci showed signatures of recent natural selection in the corresponding wild population. Some strong candidate genes for PCB resistance inferred from genome scans in wild populations were identified as QTL, but some key candidate genes were not. We conclude that rapidly evolved resistance to the developmental defects normally caused by PCB-126 is governed by few genes of large effect. However, other aspects of resistance beyond developmental phenotypes may be governed by additional loci, such that comprehensive resistance to PCB-126, and to the mixtures of chemicals that distinguish urban estuaries more broadly, may be more genetically complex.

4.
Ecotoxicol Environ Saf ; 201: 110786, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32526589

RESUMO

Modeling exposure and recovery of fish and wildlife populations after stressor mitigation serves as a basis for evaluating remediation success. Herein, we develop a novel multidimensional density dependent matrix population model that analyzes both size-structure and age class-structure simultaneously. This modeling approach emphasizes application in conjunction with field monitoring efforts (e.g., through effects-based monitoring programs) and/or laboratory analysis to link effects due to stressors to outcomes in populations. We applied the model to investigate Atlantic killifish (Fundulus heteroclitus) exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin with effects on fertility and survival rates. The Atlantic killifish is an important and well-studied model organism for understanding the effects of pollutants and other stressors in estuarine and marine ecosystems. For each exposure concentration, the corresponding plots of total population size, population size structure, and age structure over time were generated. The present study serves as an example of how a multidimensional matrix population model can integrate effects across the life cycle, provide a linkage between endpoints observed in the individual and ecological risk to the population as a whole, and project outcomes for multiple generations.


Assuntos
Fundulidae/crescimento & desenvolvimento , Modelos Biológicos , Dibenzodioxinas Policloradas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Ecossistema , Fertilidade/efeitos dos fármacos , Dinâmica Populacional , Medição de Risco
5.
Aquat Toxicol ; 210: 30-43, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30822701

RESUMO

Sentinel species such as the Atlantic killifish (Fundulus heteroclitus) living in urban waterways can be used as toxicological models to understand impacts of environmental metabolism disrupting compound (MDC) exposure on both wildlife and humans. Exposure to MDCs is associated with increased risk of metabolic syndrome, including impaired lipid and glucose homeostasis, adipogenesis, appetite control, and basal metabolism. MDCs are ubiquitous in the environment, including in aquatic environments. New Bedford Harbor (NBH), Massachusetts is polluted with polychlorinated biphenyls (PCBs), and, as we show for the first time, tin (Sn). PCBs and organotins are ligands for two receptor systems known to regulate lipid homeostasis, the aryl hydrocarbon receptor (AHR) and the peroxisome proliferator-activated receptors (PPARs), respectively. In the current study, we compared lipid homeostasis in laboratory-reared killifish from NBH (F2) and a reference location (Scorton Creek, Massachusetts; F1 and F2) to evaluate how adaptation to local conditions may influence responses to MDCs. Adult killifish from each population were exposed to 3,3',4,4',5-pentachlorobiphenyl (PCB126, dioxin-like), 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153, non-dioxin-like), or tributyltin (TBT, a PPARγ ligand) by a single intraperitoneal injection and analyzed after 3 days. AHR activation was assessed by measuring cyp1a mRNA expression. Lipid homeostasis was evaluated phenotypically by measuring liver triglycerides and organosomatic indices, and at the molecular level by measuring the mRNA expression of pparg and ppara and a target gene for each receptor. Acute MDC exposure did not affect phenotypic outcomes. However, overall NBH killifish had higher liver triglycerides and adiposomatic indices than SC killifish. Both season and population were significant predictors of the lipid phenotype. Acute MDC exposure altered hepatic gene expression only in male killifish from SC. PCB126 exposure induced cyp1a and pparg, whereas PCB153 exposure induced ppara. TBT exposure did not induce ppar-dependent pathways. Comparison of lipid homeostasis in two killifish populations extends our understanding of how MDCs act on fish and provides a basis to infer adaptive benefits of these differences in the wild.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Fundulidae/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Exposição Ambiental/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/genética , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Massachusetts , Receptores de Hidrocarboneto Arílico/genética
6.
Environ Pollut ; 247: 696-705, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30721860

RESUMO

Although alternative Flame Retardant (FR) chemicals are expected to be safer than the legacy FRs they replace, their risks to human health and the environment are often poorly characterized. This study used a small volume, fish embryo system to reveal potential mechanisms of action and diagnostic exposure patterns for TBPH (bis (2-ethylhexyl)-tetrabromophthalate), a component of several widely-used commercial products. Two different concentration of TBPH were applied to sensitive early life stages of an ecologically important test species, Fundulus heteroclitus (Atlantic killifish), with a well-annotated genome. Exposed fish embryos were sampled for transcriptomics or chemical analysis of parent compound and primary metabolite or observed for development and survival through larval stage. Global transcript profiling using RNA-seq was conducted (n = 16 per treatment) to provide a non-targeted and statistically robust approach to characterize TBPH gene expression patterns. Transcriptomic analysis revealed a dose-response in the expression of genes associated with a surprisingly limited number of biological pathways, but included the aryl hydrocarbon receptor signal transduction pathway, which is known to respond to several toxicologically-important chemical classes. A transcriptional fingerprint using Random Forests was developed that was able to perfectly discriminate exposed vs. non-exposed individuals in test sets. These results suggest that TBPH has a relatively low potential for developmental toxicity (at least in fishes), despite concerns related to its structural similarities to endocrine disrupting chemicals and that the early life stage Fundulus system may provide a convenient test system for exposure characterization. More broadly, this study advances the usefulness of a biological testing and analysis system utilizing non-targeted transcriptomics profiling and early developmental endpoints that complements current screening methods to characterize chemicals of ecological and human health concern.


Assuntos
Retardadores de Chama/toxicidade , Fundulidae/embriologia , Ácidos Ftálicos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Retardadores de Chama/análise , Fundulidae/metabolismo , Fundulidae/fisiologia , Perfilação da Expressão Gênica , Humanos , Receptores de Hidrocarboneto Arílico/metabolismo , Poluentes Químicos da Água/análise
7.
Evol Appl ; 10(8): 762-783, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-29151869

RESUMO

For most species, evolutionary adaptation is not expected to be sufficiently rapid to buffer the effects of human-mediated environmental changes, including environmental pollution. Here we review how key features of populations, the characteristics of environmental pollution, and the genetic architecture underlying adaptive traits, may interact to shape the likelihood of evolutionary rescue from pollution. Large populations of Atlantic killifish (Fundulus heteroclitus) persist in some of the most contaminated estuaries of the United States, and killifish studies have provided some of the first insights into the types of genomic changes that enable rapid evolutionary rescue from complexly degraded environments. We describe how selection by industrial pollutants and other stressors has acted on multiple populations of killifish and posit that extreme nucleotide diversity uniquely positions this species for successful evolutionary adaptation. Mechanistic studies have identified some of the genetic underpinnings of adaptation to a well-studied class of toxic pollutants; however, multiple genetic regions under selection in wild populations seem to reflect more complex responses to diverse native stressors and/or compensatory responses to primary adaptation. The discovery of these pollution-adapted killifish populations suggests that the evolutionary influence of anthropogenic stressors as selective agents occurs widely. Yet adaptation to chemical pollution in terrestrial and aquatic vertebrate wildlife may rarely be a successful "solution to pollution" because potentially adaptive phenotypes may be complex and incur fitness costs, and therefore be unlikely to evolve quickly enough, especially in species with small population sizes.

8.
Aquat Toxicol ; 192: 105-115, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28942070

RESUMO

Non-dioxin-like polychlorinated biphenyls (NDL PCBs) activate ryanodine receptors (RyR), microsomal Ca2+ channels of broad significance. Teleost fish may be important models for NDL PCB neurotoxicity, and we used sequencing databases to characterize teleost RyR and FK506 binding protein 12 or 12.6kDa (genes FKBP1A; FKBP1B), which promote NDL PCB-triggered Ca2+ dysregulation. Particular focus was placed on describing genes in the Atlantic killifish (Fundulus heteroclitus) genome and searching available RNA-sequencing datasets for single nucleotide variants (SNV) between PCB tolerant killifish from New Bedford Harbor (NBH) versus sensitive killifish from Scorton Creek (SC), MA. Consistent with the teleost whole genome duplication (tWGD), killifish have six RyR genes, corresponding to a and b paralogs of mammalian RyR1, 2 and 3. The presence of six RyR genes was consistent in all teleosts investigated including zebrafish. Killifish have four FKBP1; one FKBP1b and three FKBP1a named FKBP1aa, FKBP1ab, likely from the tWGD and a single gene duplicate FKBP1a3 suggested to have arisen in Atherinomorphae. The RyR and FKBP1 genes displayed tissue and developmental stage-specific mRNA expression, and the previously uncharacterized RyR3, herein named RyR3b, and all FKBP1 genes were prominent in brain. We identified a SNV in RyR3b encoding missense mutation E1458D. In NBH killifish, 57% were heterozygous and 28% were homozygous for this SNV, whereas almost all SC killifish (94%) lacked the variant (n≥39 per population). The outlined sequence differences between mammalian and teleost RyR and FKBP1 together with outlined population differences in SNV frequency may contribute to our understanding of NDL PCB neurotoxicity.


Assuntos
Fundulidae/genética , Filogenia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos , Mutação de Sentido Incorreto/genética , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Proteína 1A de Ligação a Tacrolimo/química
9.
Science ; 354(6317): 1305-1308, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27940876

RESUMO

Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl hydrocarbon receptor-based signaling pathway as a shared target of selection. This suggests evolutionary constraint on adaptive solutions to complex toxicant mixtures at each site. However, distinct molecular variants apparently contribute to adaptive pathway modification among tolerant populations. Selection also targets other toxicity-mediating genes and genes of connected signaling pathways; this indicates complex tolerance phenotypes and potentially compensatory adaptations. Molecular changes are consistent with selection on standing genetic variation. In killifish, high nucleotide diversity has likely been a crucial substrate for selective sweeps to propel rapid adaptation.


Assuntos
Adaptação Fisiológica/genética , Fundulidae/genética , Receptores de Hidrocarboneto Arílico/genética , Poluentes Químicos da Água/toxicidade , Poluição da Água , Animais , Citocromo P-450 CYP1A1/genética , Estuários , Evolução Molecular , Variação Genética , Genômica , Fenótipo , Seleção Genética , Análise de Sequência de DNA , Fatores de Tempo , Transcriptoma
10.
Artigo em Inglês | MEDLINE | ID: mdl-26505693

RESUMO

The Elizabeth River system is an estuary in southeastern Virginia, surrounded by the towns of Chesapeake, Norfolk, Portsmouth, and Virginia Beach. The river has played important roles in U.S. history and has been the location of various military and industrial activities. These activities have been the source of chemical contamination in this aquatic system. Important industries, until the 1990s, included wood treatment plants that used creosote, an oil-derived product that is rich in polycyclic aromatic hydrocarbons (PAH). These plants left a legacy of PAH pollution in the river, and in particular Atlantic Wood Industries is a designated Superfund site now undergoing remediation. Numerous studies examined the distribution of PAH in the river and impacts on resident fauna. This review focuses on how a small estuarine fish with a limited home range, Fundulus heteroclitus (Atlantic killifish or mummichog), has responded to this pollution. While in certain areas of the river this species has clearly been impacted, as evidenced by elevated rates of liver cancer, some subpopulations, notably the one associated with the Atlantic Wood Industries site, displayed a remarkable ability to resist the marked effects PAH have on the embryonic development of fish. This review provides evidence of how pollutants have acted as evolutionary agents, causing changes in ecosystems potentially lasting longer than the pollutants themselves. Mechanisms underlying this evolved resistance, as well as mechanisms underlying the effects of PAH on embryonic development, are also described. The review concludes with a description of ongoing and promising efforts to restore this historic American river.


Assuntos
Evolução Biológica , Conservação dos Recursos Naturais , Fundulidae/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Fundulidae/embriologia , Rios/química , Virginia
11.
Environ Sci Pollut Res Int ; 22(11): 8329-38, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25532870

RESUMO

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates many of the toxic effects of dioxin-like compounds (DLCs) and some polycyclic aromatic hydrocarbons (PAHs). Strong AHR agonists, such as certain polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), cause severe cardiac teratogenesis in fish embryos. Moderately strong AHR agonists, such as benzo[a]pyrene and ß-naphthoflavone, have been shown to cause similar cardiotoxic effects when coupled with a cytochrome P450 1A (CYP1A) inhibitor, such as fluoranthene (FL). We sought to determine if weak AHR agonists, when combined with a CYP1A inhibitor (FL) or CYP1A morpholino gene knockdown, are capable of causing cardiac deformities similar to moderately strong AHR agonists (Wassenberg and Di Giulio Environ Health Perspect 112(17):1658-1664, 2004a; Wassenberg and Di Giulio Res 58(2-5):163-168, 2004b; Billiard et al. Toxicol Sci 92(2):526-536, 2006; Van Tiem and Di Giulio Toxicol Appl Pharmacol 254(3):280-287, 2011). The weak AHR agonists included the following: carbaryl, phenanthrene, 2-methylindole, 3-methylindole, indigo, and indirubin. Danio rerio (zebrafish) embryos were first exposed to weak AHR agonists at equimolar concentrations. The agonists were assessed for their relative potency as inducers of CYP1 enzyme activity, measured by the ethoxyresorufin-O-deethylase (EROD) assay, and cardiac deformities. Carbaryl, 2-methylindole, and 3-methylindole induced the highest CYP1A activity in zebrafish. Experiments were then conducted to determine the individual cardiotoxicity of each compound. Next, zebrafish were coexposed to each agonist (at concentrations below those determined to be cardiotoxic) and FL in combination to assess if CYP1A inhibition could induce cardiac deformities. Carbaryl, 2-methylindole, 3-methylindole, and phenanthrene significantly increased pericardial edema relative to controls when combined with FL. To further evaluate the interaction of the weak AHR agonists and CYP1A inhibition, a morpholino was used to knockdown CYP1A expression, and embryos were then exposed to each agonist individually. In embryos exposed to 2-methylindole, CYP1A knockdown caused a similar level of pericardial edema to that caused by exposure to 2-methylindole and FL. The results showed a complex pattern of cardiotoxic response to weak agonist inhibitor exposure and morpholino-knockdown. However, CYP1A knockdown in phenanthrene and 3-methylindole only moderately increased pericardial edema relative to coexposure to FL. AHR2 expression was also knocked down using a morpholino to determine its role in mediating the observed cardiac teratogenesis. Knockdown of AHR2 did not rescue the pericardial edema as previously observed with strong AHR agonists. While some of the cardiotoxicity observed may be attributed to the combination of weak AHR agonism and CYP1A inhibition, other weak AHR agonists appear to be causing cardiotoxicity through an AHR2-independent mechanism. The data show that CYP1A is protective of the cardiac toxicity associated with weak AHR agonists and that knockdown can generate pericardial edema, but these findings are also suggestive of differing mechanisms of cardiac toxicity among known AHR agonists.


Assuntos
Cardiotoxicidade , Citocromo P-450 CYP1A1/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/agonistas , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Benzo(a)pireno/metabolismo , Citocromo P-450 CYP1A1/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Fluorenos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Bifenilos Policlorados/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas de Peixe-Zebra/genética
12.
Environ Toxicol Chem ; 33(12): 2767-74, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25196082

RESUMO

In the present study, effect-directed analysis was used to identify teratogenic compounds in porewater collected from a Superfund site along the Elizabeth River estuary (VA, USA). Zebrafish (Danio rerio) exposed to the porewater displayed acute developmental toxicity and cardiac teratogenesis, presumably because of elevated sediment levels of polycyclic aromatic hydrocarbons (PAHs) from historical creosote use. Pretreatment of porewater with several physical and chemical particle removal methods revealed that colloid-bound chemicals constituted the bulk of the observed toxicity. Size-exclusive chromatography and normal-phase high-performance liquid chromatography were used to fractionate Elizabeth River porewater. Acute toxicity of porewater extracts and extract fractions was assessed as the pericardial area in embryonic zebrafish. The most toxic fraction contained several known aryl hydrocarbon receptor (AhR) agonists (e.g., 1,2-benzofluorene and 1,2-benzanthracene) and cytochrome P450 A1 (CPY1A) inhibitors (e.g., dibenzothiophene and fluoranthene). The second most toxic fraction contained known AhR agonists (e.g., benzo[a]pyrene and indeno[1,2,3-cd]pyrene). Addition of a CYP1A inhibitor, fluoranthene, increased toxicity in all active porewater fractions, suggesting synergism between several contaminants present in porewaters. The results indicate that the observed acute toxicity associated with Elizabeth River porewater results from high concentrations of AhR agonistic PAHs and mixture effects related to interactions between compounds co-occurring at the Elizabeth River site. However, even after extensive fractionation and chemical characterization, it remains plausible that some active compounds in Elizabeth River porewater remain unidentified.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/química , Rios/química , Poluentes Químicos da Água/toxicidade , Animais , Benzo(a)Antracenos/química , Benzo(a)Antracenos/isolamento & purificação , Benzo(a)Antracenos/toxicidade , Benzo(a)pireno/química , Benzo(a)pireno/isolamento & purificação , Benzo(a)pireno/toxicidade , Sistema Cardiovascular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1A1/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Fluorenos/química , Fluorenos/isolamento & purificação , Fluorenos/metabolismo , Fluorenos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Pirenos/química , Pirenos/isolamento & purificação , Pirenos/toxicidade , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/metabolismo , Virginia , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Peixe-Zebra/crescimento & desenvolvimento
13.
Environ Sci Pollut Res Int ; 21(24): 13898-908, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24374617

RESUMO

Atlantic killifish (Fundulus heteroclitus) inhabiting the Atlantic Wood Superfund site on the Elizabeth River (Portsmouth, VA, USA) are exposed to a complex mixture of polycyclic aromatic hydrocarbons (PAHs) from former creosote operations, but are resistant to the acute toxicity and cardiac teratogenesis caused by PAHs. The resistance is associated with a dramatic recalcitrance to induction of cytochrome P450 (CYP1) metabolism enzymes following exposure to aryl hydrocarbon receptor (AHR) agonists, along with an elevated antioxidant response and increased expression of several other xenobiotic metabolism and excretion enzymes. However, the heritability of the resistance in the absence of chemical stressors has been inconsistently demonstrated. Understanding the heritability of this resistance will help clarify the nature of population-level responses to chronic exposure to PAH mixtures and aid in identifying the important mechanistic components of resistance to aryl hydrocarbons. We compared the response of Atlantic Wood F1 and F2 embryos to benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), 3,3',4,4',5-pentachlorobiphenyl (PCB-126), and a mixture of BkF and fluoranthene (Fl) to that of F1 embryos of reference site killifish. Resistance to cardiac teratogenesis and induction of CYP mRNA expression and CYP activity was determined. We found that both Atlantic Wood F1 and F2 embryos were highly resistance to cardiac teratogenesis. However, the resistance by Atlantic Wood F2 embryos to induction of CYP mRNA expression and enzyme activity was intermediate between that of Atlantic Wood F1 embryos and reference embryos. These results suggest that resistance to cardiac teratogenesis in Atlantic Wood fish is conferred by multiple factors, not all of which appear to be fully genetically heritable.


Assuntos
Proteínas de Peixes/metabolismo , Fundulidae/embriologia , Fundulidae/fisiologia , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Poluentes Químicos da Água/toxicidade , Adaptação Fisiológica , Animais , Proteínas de Peixes/genética , Fundulidae/anormalidades , Fundulidae/genética , Coração/efeitos dos fármacos , Coração/embriologia , Miocárdio/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Teratogênese/efeitos dos fármacos
14.
Environ Sci Technol ; 47(18): 10556-66, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003986

RESUMO

Atlantic killifish (Fundulus heteroclitus) inhabiting the Atlantic Wood Industries Superfund Site (Elizabeth River, Portsmouth, VA, USA) are resistant to the acute toxicity and cardiac teratogenesis caused by high levels of polycyclic aromatic hydrocarbons (PAHs) from creosote. The resistance is linked to down regulation of the aryl hydrocarbon receptor (AHR) pathway. We investigated the association between CYP1 activity, as a marker of potential AHR pathway suppression, and contaminant resistance in killifish subpopulations from sites throughout the estuary that varied significantly in PAH contamination level. Adult killifish and sediments were collected from seven sites across approximately 13.7 km in river length within the estuary and from a nearby reference site. Sediment PAH levels were determined using gas chromatography mass spectrometry. Embryos obtained via manual spawning were exposed to individual AHR agonists and PAH mixtures 24 h post fertilization (hpf); CYP1 activity was determined by in ovo ethoxyresorufin-o-deethylase (EROD) at 96 hpf, and cardiac deformity severity was scored at 144 hpf. The total PAH levels measured among the sites varied from approximately 200 to 125,000 ng/g dry sediment. Overall, the resistance to teratogenesis was strongest in the subpopulations from sites in or closest to the major PAH contamination sites, but even embryos from less-contaminated sites within the Elizabeth River demonstrated at least partial resistance to many challenges. Surprisingly, all of the subpopulations tested were highly resistant to PCB-126 (3,3',4,4',5-pentachlorobiphenyl). However, the degree of CYP1 activity response varied significantly among subpopulations and did not always correlate strongly with resistance to teratogenesis; some subpopulations resisted the cardiac teratogenesis caused by the challenges at doses that still elicited strong EROD induction. Our results suggest that there is variation in the adaptive phenotype exhibited by laboratory-spawned embryos from killifish subpopulations throughout the estuary. Furthermore, the results show that contaminants have affected killifish subpopulations throughout the estuary, even in sites with lower levels of PAHs.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Fundulidae/fisiologia , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Teratogênicos/toxicidade , Poluentes Químicos da Água/toxicidade , Anormalidades Induzidas por Medicamentos/enzimologia , Adaptação Fisiológica , Animais , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/enzimologia , Desenvolvimento Embrionário/efeitos dos fármacos , Fundulidae/anormalidades , Sedimentos Geológicos/análise , Cardiopatias Congênitas/induzido quimicamente , Cardiopatias Congênitas/enzimologia , Hidrocarbonetos Policíclicos Aromáticos/análise , Receptores de Hidrocarboneto Arílico/metabolismo , Teratogênicos/análise , Virginia , Poluentes Químicos da Água/análise
15.
PLoS One ; 7(12): e52479, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300682

RESUMO

Environmental estrogens are ubiquitous in the environment and can cause detrimental effects on male reproduction. In fish, a multitude of effects from environmental estrogens have been observed including altered courting behavior and fertility, sex reversal, and gonadal histopathology. However, few studies in fish assess the impacts of estrogenic exposure on a physiological endpoint, such as reproduction, as well as the associated morphologic response and underlying global gene expression changes. This study assessed the implications of a 14 day sub-chronic exposure of ethinylestradiol (EE2; 1.0 or 10.0 µg/L EE2) on male medaka fertility, testicular histology and testicular gene expression. The findings demonstrate that a 14 day exposure to EE2 induced impaired male reproductive capacity and time- and dose-dependent alterations in testicular morphology and gene expression. The average fertilization rate/day following the exposure for control, 1.0 and 10.0 µg/L EE2 was 91.3% (±4.4), 62.8% (±8.3) and 28.8% (±5.8), respectively. The testicular morphologic alterations included increased germ cell apoptosis, decreased germinal epithelium and thickening of the interstitium. These changes were highly associated with testicular gene expression changes using a medaka-specific microarray. A pathway analysis of the differentially expressed genes emphasized genes and pathways associated with apoptosis, cell cycle and proliferation, collagen production/extracellular matrix organization, hormone signaling, male reproduction and protein ubiquitination among others. These findings highlight the importance of anchoring global gonadal gene expression changes with morphology and ultimately with tissue/organ function.


Assuntos
Etinilestradiol/toxicidade , Oryzias/anatomia & histologia , Oryzias/fisiologia , Reprodução/efeitos dos fármacos , Testículo/anatomia & histologia , Testículo/fisiologia , Transcriptoma/efeitos dos fármacos , Animais , Cruzamento , Estrogênios/toxicidade , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Oryzias/genética , Reprodução/genética , Especificidade da Espécie , Testículo/efeitos dos fármacos , Testículo/metabolismo , Fatores de Tempo
16.
Ecotoxicology ; 21(2): 465-74, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22037695

RESUMO

Atlantic killifish (Fundulus heteroclitus) from the Atlantic Wood Superfund site on the Elizabeth River (ER), VA are dramatically resistant to the acute toxicity and teratogenesis caused by polycyclic aromatic hydrocarbons (PAHs). To understand the consequences of adaptation to chronic PAH pollution, we have attempted to further define the chemical tolerance associated with this resistance. An important component of the PAH adaptation of ER fish is the dramatic down-regulation of the aryl hydrocarbon receptor (AHR) pathway, resulting in decreased cytochrome p450 (CYP) 1 activity. Herein, we compared the susceptibility to several insecticides of ER fish to that of reference site (King's Creek; KC) fish; use of these chemicals as probes of the resistance will help to demonstrate if the contaminant adaptation exhibited by ER fish is broad or narrow and AHR-focused. We hypothesized that ER fish would be less susceptible to the organophosphate chlorpyrifos (activated by CYP) and more susceptible to the pyrethroid permethrin (detoxified by CYP). Comparison of acute toxicity in 5-day-old larvae supported this hypothesis for chlorpyrifos. As expected, chemical up-regulation of CYP by co-exposure to ß-naphthoflavone (BNF) enhanced the susceptibility of KC but it did not affect ER larvae. Unexpectedly, ER larvae were much less susceptible to permethrin than KC larvae. However, co-exposure to BNF greatly decreased the susceptibility of KC larvae, indicating that metabolism of permethrin by CYP was protective. Additionally, fish from each population were compared for susceptibility to the carbamate carbaryl, an acute neurotoxicant and weak AHR agonist that induces teratogenesis similar to that caused by PAHs. ER embryos and larvae were less susceptible than KC fish. These results suggest that the adaptive phenotype of ER fish is multi-faceted and that aspects other than CYP response are likely to greatly affect their response to contaminants.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Fundulidae/fisiologia , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Anormalidades Induzidas por Medicamentos/etiologia , Anormalidades Induzidas por Medicamentos/patologia , Animais , Citocromo P-450 CYP1A1/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/patologia , Monitoramento Ambiental , Resíduos Perigosos , Estágios do Ciclo de Vida/efeitos dos fármacos , Óvulo/efeitos dos fármacos , Óvulo/enzimologia , Virginia
17.
Aquat Toxicol ; 99(2): 232-40, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20605646

RESUMO

Exposure of developing fish to polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) results in a suite of defects including cardiac malformation, pericardial and yolk sac edema, craniofacial defects, and hemorrhaging. Several populations of Atlantic killifish or mummichog (Fundulus heteroclitus) on the Atlantic coast of the United States are resistant to the developmental and acute toxicity caused by PAHs and HAHs; this has made Fundulus a valuable model for studying aryl hydrocarbon sensitivity and adaptation. In order to further increase the utility of Fundulus, better understanding of the components of the molecular pathways governing aryl hydrocarbon response in Fundulus is required. The aryl hydrocarbon receptor (AHR) is known to mediate many of the toxic responses to PAHs and HAHs. A single AHR has been identified in mammals, but Fundulus has two AHRs and their relative roles are not clear. In the current study, translation-blocking and splice-junction morpholino gene knockdown was used to determine the roles of AHR1 and AHR2 in mediating cardiac teratogenesis induced by beta-naphthoflavone (BNF), benzo[k]fluoranthene (BkF), and 3,3',4,4',5-pentachlorobiphenyl (PCB-126). Here we report that AHR2 and not AHR1 knockdown resulted in rescue of teratogenicity induced by BNF, BkF, and PCB-126. These data demonstrate that AHR2 is the primary mediator of cardiac teratogenesis caused by multiple aryl hydrocarbons in Fundulus and suggest that suppression of the AHR pathway through modulation of AHR2 is a plausible mechanism for PAH resistance in adapted fish. Additionally, this is the first reported use of splice-junction morpholinos in Fundulus.


Assuntos
Fundulidae/fisiologia , Coração/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Adaptação Fisiológica , Animais , Fundulidae/genética , Fundulidae/metabolismo , Técnicas de Silenciamento de Genes , Receptores de Hidrocarboneto Arílico/genética
18.
Environ Int ; 35(6): 971-86, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19375165

RESUMO

Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem. This review examines one of the consequences of climate change that has only recently attracted attention: namely, the effects of climate change on the environmental distribution and toxicity of chemical pollutants. A review was undertaken of the scientific literature (original research articles, reviews, government and intergovernmental reports) focusing on the interactions of toxicants with the environmental parameters, temperature, precipitation, and salinity, as altered by climate change. Three broad classes of chemical toxicants of global significance were the focus: air pollutants, persistent organic pollutants (POPs), including some organochlorine pesticides, and other classes of pesticides. Generally, increases in temperature will enhance the toxicity of contaminants and increase concentrations of tropospheric ozone regionally, but will also likely increase rates of chemical degradation. While further research is needed, climate change coupled with air pollutant exposures may have potentially serious adverse consequences for human health in urban and polluted regions. Climate change producing alterations in: food webs, lipid dynamics, ice and snow melt, and organic carbon cycling could result in increased POP levels in water, soil, and biota. There is also compelling evidence that increasing temperatures could be deleterious to pollutant-exposed wildlife. For example, elevated water temperatures may alter the biotransformation of contaminants to more bioactive metabolites and impair homeostasis. The complex interactions between climate change and pollutants may be particularly problematic for species living at the edge of their physiological tolerance range where acclimation capacity may be limited. In addition to temperature increases, regional precipitation patterns are projected to be altered with climate change. Regions subject to decreases in precipitation may experience enhanced volatilization of POPs and pesticides to the atmosphere. Reduced precipitation will also increase air pollution in urbanized regions resulting in negative health effects, which may be exacerbated by temperature increases. Regions subject to increased precipitation will have lower levels of air pollution, but will likely experience enhanced surface deposition of airborne POPs and increased run-off of pesticides. Moreover, increases in the intensity and frequency of storm events linked to climate change could lead to more severe episodes of chemical contamination of water bodies and surrounding watersheds. Changes in salinity may affect aquatic organisms as an independent stressor as well as by altering the bioavailability and in some instances increasing the toxicity of chemicals. A paramount issue will be to identify species and populations especially vulnerable to climate-pollutant interactions, in the context of the many other physical, chemical, and biological stressors that will be altered with climate change. Moreover, it will be important to predict tipping points that might trigger or accelerate synergistic interactions between climate change and contaminant exposures.


Assuntos
Poluição Ambiental , Efeito Estufa , Poluentes Atmosféricos/toxicidade , Exposição Ambiental , Humanos , Hipersensibilidade/epidemiologia , Compostos Orgânicos/toxicidade , Material Particulado/toxicidade , Praguicidas/toxicidade , Doença Cardiopulmonar/epidemiologia
19.
Aquat Toxicol ; 87(4): 289-95, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18378331

RESUMO

A significant challenge in environmental toxicology is that many genetic and genomic tools available in laboratory models are not developed for commonly used environmental models. The Atlantic killifish (Fundulus heteroclitus) is one of the most studied teleost environmental models, yet few genetic or genomic tools have been developed for use in this species. The advancement of genetic and evolutionary toxicology will require that many of the tools developed in laboratory models be transferred into species more applicable to environmental toxicology. Antisense morpholino oligonucleotide (MO) gene knockdown technology has been widely utilized to study development in zebrafish and has been proven to be a powerful tool in toxicological investigations through direct manipulation of molecular pathways. To expand the utility of killifish as an environmental model, MO gene knockdown technology was adapted for use in Fundulus. Morpholino microinjection methods were altered to overcome the significant differences between these two species. Morpholino efficacy and functional duration were evaluated with molecular and phenotypic methods. A cytochrome P450-1A (CYP1A) MO was used to confirm effectiveness of the methodology. For CYP1A MO-injected embryos, a 70% reduction in CYP1A activity, a 86% reduction in total CYP1A protein, a significant increase in beta-naphthoflavone-induced teratogenicity, and estimates of functional duration (50% reduction in activity 10 dpf, and 86% reduction in total protein 12 dpf) conclusively demonstrated that MO technologies can be used effectively in killifish and will likely be just as informative as they have been in zebrafish.


Assuntos
Citocromo P-450 CYP1A1/genética , Fundulidae/anormalidades , Cardiopatias Congênitas/induzido quimicamente , Oligonucleotídeos Antissenso/farmacologia , Animais , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos dos fármacos , Modelos Biológicos , beta-Naftoflavona
20.
Environ Toxicol Chem ; 25(10): 2653-61, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17022406

RESUMO

Laboratory studies were conducted to investigate the subacute effects of transgenic Cry1Ab corn leaf material containing Bacillus thuringiensis (Bt) protein on the terrestrial isopods Trachelipus rathkii and Armadillidium nasatum. Survival and growth were measured for eight weeks in isopods fed leaf material of two Bt11 corn varieties, two Monsanto 810 (Mon810) corn varieties, and the isolines of each. Total lipid and protein content of the organisms was measured to examine effects on energetic reserves. Armadillidium nasatum individuals in all treatments responded similarly. For T. rathkii, no statistically significant effect of Bt was observed, but statistical differences were observed in growth between hybrids. Protein and sugar content of the food were found to be correlated with the differences in growth for T. rathkii. Total protein content was higher in T. rathkii and A. nasatum fed material with higher protein and sugar content. A trend toward less growth in T. rathkii on Bt corn varieties versus their isolines triggered a concentration-response assay with purified Cry1Ab protein. No adverse effects of purified Bt protein were observed. These results indicate that little hazard to T. rathkii and A. nasatum from Bt corn leaf material from these hybrids exists. However, nutritional differences in corn hybrids contributed to differences in isopod growth.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Insetos/efeitos dos fármacos , Animais , Toxinas de Bacillus thuringiensis , Ensaio de Imunoadsorção Enzimática , Insetos/crescimento & desenvolvimento , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA