Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Br J Anaesth ; 132(1): 76-85, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37953202

RESUMO

BACKGROUND: Child anxiety before general anaesthesia and surgery is common. Midazolam is a commonly used premedication to address this. Melatonin is an alternative anxiolytic, however trials evaluating its efficacy in children have delivered conflicting results. METHODS: This multicentre, double-blind randomised trial was performed in 20 UK NHS Trusts. A sample size of 624 was required to declare noninferiority of melatonin. Anxious children, awaiting day case elective surgery under general anaesthesia, were randomly assigned 1:1 to midazolam or melatonin premedication (0.5 mg kg-1, maximum 20 mg) 30 min before transfer to the operating room. The primary outcome was the modified Yale Preoperative Anxiety Scale-Short Form (mYPAS-SF). Secondary outcomes included safety. Results are presented as n (%) and adjusted mean differences with 95% confidence intervals. RESULTS: The trial was stopped prematurely (n=110; 55 per group) because of recruitment futility. Participants had a median age of 7 (6-10) yr, and 57 (52%) were female. Intention-to-treat and per-protocol modified Yale Preoperative Anxiety Scale-Short Form analyses showed adjusted mean differences of 13.1 (3.7-22.4) and 12.9 (3.1-22.6), respectively, in favour of midazolam. The upper 95% confidence interval limits exceeded the predefined margin of 4.3 in both cases, whereas the lower 95% confidence interval excluded zero, indicating that melatonin was inferior to midazolam, with a difference considered to be clinically relevant. No serious adverse events were seen in either arm. CONCLUSION: Melatonin was less effective than midazolam at reducing preoperative anxiety in children, although the early termination of the trial increases the likelihood of bias. CLINICAL TRIAL REGISTRATION: ISRCTN registry: ISRCTN18296119.


Assuntos
Melatonina , Midazolam , Criança , Humanos , Feminino , Masculino , Midazolam/uso terapêutico , Melatonina/uso terapêutico , Pré-Medicação/métodos , Ansiedade/prevenção & controle , Anestesia Geral , Método Duplo-Cego
2.
Int Dent J ; 73 Suppl 2: S69-S73, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37867064

RESUMO

Antimicrobial mouthwashes are considered to reduce dental plaque biofilm and thus the potential to prevent plaque-induced oral diseases, particularly periodontal diseases. The effectiveness of mouthwashes relates to this antiplaque role, as well as, their tooth-whitening potential and ability to mask/mange malodour (halitosis). There is also a growing interest in the use of mouthwashes as an adjunctive measure in post surgical and post-dental care, while the COVID-19 pandemic has given a new lease of life to mouthwashes as an oral antispetic that may be useful in reducing the oral viral load. The mode of action of mouthwashes varies, depending on their active ingredients, concentrations, and mode and frequency of use, as does their potential effectiveness. This article aims to provide a narrative overview of the evidence of the effectiveness of the most widely used mouthwashes in managing oral diseases, oral conditions, and adjunctive care roles.


Assuntos
Anti-Infecciosos Locais , Placa Dentária , Gengivite , Humanos , Antissépticos Bucais/uso terapêutico , Clorexidina , Pandemias , Placa Dentária/prevenção & controle , Gengivite/prevenção & controle , Anti-Infecciosos Locais/uso terapêutico
3.
Cochrane Database Syst Rev ; 8: CD006205, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650478

RESUMO

BACKGROUND: Surgery is a common treatment option in oral cavity cancer (and less frequently in oropharyngeal cancer) to remove the primary tumour and sometimes neck lymph nodes. People with early-stage disease may undergo surgery alone or surgery plus radiotherapy, chemotherapy, immunotherapy/biotherapy, or a combination of these. Timing and extent of surgery varies. This is the third update of a review originally published in 2007. OBJECTIVES: To evaluate the relative benefits and harms of different surgical treatment modalities for oral cavity and oropharyngeal cancers. SEARCH METHODS: We used standard, extensive Cochrane search methods. The latest search date was 9 February 2022. SELECTION CRITERIA: Randomised controlled trials (RCTs) that compared two or more surgical treatment modalities, or surgery versus other treatment modalities, for primary tumours of the oral cavity or oropharynx. DATA COLLECTION AND ANALYSIS: Our primary outcomes were overall survival, disease-free survival, locoregional recurrence, and recurrence; and our secondary outcomes were adverse effects of treatment, quality of life, direct and indirect costs to patients and health services, and participant satisfaction. We used standard Cochrane methods. We reported survival data as hazard ratios (HRs). For overall survival, we reported the HR of mortality, and for disease-free survival, we reported the combined HR of new disease, progression, and mortality; therefore, HRs below 1 indicated improvement in these outcomes. We used GRADE to assess certainty of evidence for each outcome. MAIN RESULTS: We identified four new trials, bringing the total number of included trials to 15 (2820 participants randomised, 2583 participants analysed). For objective outcomes, we assessed four trials at high risk of bias, three at low risk, and eight at unclear risk. The trials evaluated nine comparisons; none compared different surgical approaches for excision of the primary tumour. Five trials evaluated elective neck dissection (ND) versus therapeutic (delayed) ND in people with oral cavity cancer and clinically negative neck nodes. Elective ND compared with therapeutic ND probably improves overall survival (HR 0.64, 95% confidence interval (CI) 0.50 to 0.83; I2 = 0%; 4 trials, 883 participants; moderate certainty) and disease-free survival (HR 0.56, 95% CI 0.45 to 0.70; I2 = 12%; 5 trials, 954 participants; moderate certainty), and probably reduces locoregional recurrence (HR 0.58, 95% CI 0.43 to 0.78; I2 = 0%; 4 trials, 458 participants; moderate certainty) and recurrence (RR 0.58, 95% CI 0.48 to 0.70; I2 = 0%; 3 trials, 633 participants; moderate certainty). Elective ND is probably associated with more adverse events (risk ratio (RR) 1.31, 95% CI 1.11 to 1.54; I2 = 0%; 2 trials, 746 participants; moderate certainty). Two trials evaluated elective radical ND versus elective selective ND in people with oral cavity cancer, but we were unable to pool the data as the trials used different surgical procedures. Neither study found evidence of a difference in overall survival (pooled measure not estimable; very low certainty). We are unsure if there is a difference in effect on disease-free survival (HR 0.57, 95% CI 0.29 to 1.11; 1 trial, 104 participants; very low certainty) or recurrence (RR 1.21, 95% CI 0.63 to 2.33; 1 trial, 143 participants; very low certainty). There may be no difference between the interventions in terms of adverse events (1 trial, 148 participants; low certainty). Two trials evaluated superselective ND versus selective ND, but we were unable to use the data. One trial evaluated supraomohyoid ND versus modified radical ND in 332 participants. We were unable to use any of the primary outcome data. The evidence on adverse events was very uncertain, with more complications, pain, and poorer shoulder function in the modified radical ND group. One trial evaluated sentinel node biopsy versus elective ND in 279 participants. There may be little or no difference between the interventions in overall survival (HR 1.00, 95% CI 0.90 to 1.11; low certainty), disease-free survival (HR 0.98, 95% CI 0.90 to 1.07; low certainty), or locoregional recurrence (HR 1.04, 95% CI 0.91 to 1.19; low certainty). The trial provided no usable data for recurrence, and reported no adverse events (very low certainty). One trial evaluated positron emission tomography-computed tomography (PET-CT) following chemoradiotherapy (with ND only if no or incomplete response) versus planned ND (before or after chemoradiotherapy) in 564 participants. There is probably no difference between the interventions in overall survival (HR 0.92, 95% CI 0.65 to 1.31; moderate certainty) or locoregional recurrence (HR 1.00, 95% CI 0.94 to 1.06; moderate certainty). One trial evaluated surgery plus radiotherapy versus radiotherapy alone and provided very low-certainty evidence of better overall survival in the surgery plus radiotherapy group (HR 0.24, 95% CI 0.10 to 0.59; 35 participants). The data were unreliable because the trial stopped early and had multiple protocol violations. In terms of adverse events, subcutaneous fibrosis was more frequent in the surgery plus radiotherapy group, but there were no differences in other adverse events (very low certainty). One trial evaluated surgery versus radiotherapy alone for oropharyngeal cancer in 68 participants. There may be little or no difference between the interventions for overall survival (HR 0.83, 95% CI 0.09 to 7.46; low certainty) or disease-free survival (HR 1.07, 95% CI 0.27 to 4.22; low certainty). For adverse events, there were too many outcomes to draw reliable conclusions. One trial evaluated surgery plus adjuvant radiotherapy versus chemotherapy. We were unable to use the data for any of the outcomes reported (very low certainty). AUTHORS' CONCLUSIONS: We found moderate-certainty evidence based on five trials that elective neck dissection of clinically negative neck nodes at the time of removal of the primary oral cavity tumour is superior to therapeutic neck dissection, with increased survival and disease-free survival, and reduced locoregional recurrence. There was moderate-certainty evidence from one trial of no difference between positron emission tomography (PET-CT) following chemoradiotherapy versus planned neck dissection in terms of overall survival or locoregional recurrence. The evidence for each of the other seven comparisons came from only one or two studies and was assessed as low or very low-certainty.


Assuntos
Recidiva Local de Neoplasia , Neoplasias Orofaríngeas , Humanos , Imunoterapia , Boca , Pescoço , Neoplasias Orofaríngeas/cirurgia , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
Community Dent Oral Epidemiol ; 51(3): 373-379, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36411370

RESUMO

OBJECTIVE: To describe the characteristics of oral health interventions implemented in prison settings and explore the barriers and facilitators towards implementation. METHODS: Following Joanna Briggs Institute scoping review methodology, six databases were searched including Medline (R), Emcare, Embase, AMED, Cochrane and PsycINFO. A total of 978 studies were returned and screened. The inclusion criteria were those studies conducted in a prison population, with an intervention to address oral health and published since 2000. RESULTS: Ten studies published between 2008 and 2021 were included. All were conducted in high-income countries. Three intervention types were identified: health education (n = 5), teledentistry (n = 3) and screening or triaging (n = 2). The barriers and facilitators to successful implementation were grouped into a framework of four overarching concepts. These included prison environment, population makeup, compliance and staffing. CLINICAL SIGNIFICANCE: Evidence suggests that oral health interventions in prisons are focused on improving access to services and oral health messages. A range of drivers including the prison environment, staffing levels, recruitment and intervention compliance influence implementation and the success of interventions.


Assuntos
Saúde Bucal , Prisões , Humanos
5.
JAC Antimicrob Resist ; 5(2): dlad048, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38659427

RESUMO

Background: Antibiotic overuse and misuse in primary care are common, highlighting the importance of antimicrobial stewardship (AMS) efforts in this setting. Audit and feedback (A&F) interventions can improve professional practice and performance in some settings. Objectives and methods: To leverage the expertise from international members of the Joint Programming Initiative on Antimicrobial Resistance - Primary care Antibiotic Audit and feedback Network (JPIAMR-PAAN). Network members all have experience of designing and delivering A&F interventions to reduce inappropriate antibiotic prescribing in primary care settings. We aim to introduce the network and explore ongoing A&F activities in member regions. An online survey was administered to all network members to collect regional information. Results: Fifteen respondents from 11 countries provided information on A&F activities in their country, and national/regional antibiotic stewardship programmes or policies. Most countries use electronic medical records as the primary data source, antibiotic appropriateness as the main outcome of feedback, and target GPs as the prescribers of interest. Funding sources varied across countries, which could influence the frequency and quality of A&F interventions. Nine out of 11 countries reported having a national antibiotic stewardship programme or policy, which aim to provide systematic support to ongoing AMS efforts and aid sustainability. Conclusions: The survey identified gaps and opportunities for AMS efforts that include A&F across member countries in Europe, Canada and Australia. JPIAMR-PAAN will continue to leverage its members to produce best practice resources and toolkits for antibiotic A&F interventions in primary care settings and identify research priorities.

6.
J Am Dent Assoc ; 153(11): 1078-1088.e7, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36175201

RESUMO

BACKGROUND: The International Caries Consensus Collaboration (ICCC) has published recommendations on carious tissue removal to treat cavitated carious lesions in a manner that preserves hard tissue and retains teeth long term. This study quantifies The National Dental Practice-Based Research Network dentists' use of selective caries removal. METHODS: This cross-sectional questionnaire study assessed reported use of selective caries removal when treating deep caries in asymptomatic and symptomatic teeth in response to clinical case scenarios. Statistical methods included the proportion of respondents concordant with ICCC guidelines at various thresholds and logistic regression to model factors associated with concordance. RESULTS: A total of 500 dentists responded. The study sample was 57% male, mean (SD) age was 50.9 (12.6) years, and 60% worked in private practice settings. Higher levels of concordance for choosing selective caries removal 50% or greater of the time were found for asymptomatic (62.4%; 95% CI, 57.6 to 67.2) than for symptomatic caries (49.3%; 95% CI, 44.4 to 54.2). These differences were significantly associated with type of practice setting. CONCLUSIONS: The National Dental Practice-Based Research Network dentists reported using selective caries removal strategies when managing deep carious lesions more often than in previous US and Japanese practice-based research network studies and from results of a systematic review and meta-analysis. Nonetheless, substantive discordance with the ICCC guidelines was seen by the authors of this study. PRACTICAL IMPLICATIONS: More dissemination and continuing education activities, as well as implementation studies, may further encourage use of selective caries removal to soft or firm dentin when indicated.


Assuntos
Cárie Dentária , Dente , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Suscetibilidade à Cárie Dentária , Estudos Transversais , Assistência Odontológica , Cárie Dentária/cirurgia , Padrões de Prática Odontológica
7.
Cochrane Database Syst Rev ; 4: CD004714, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35420698

RESUMO

BACKGROUND: Glycaemic control is a key component in diabetes mellitus (diabetes) management. Periodontitis is the inflammation and destruction of the underlying supporting tissues of the teeth. Some studies have suggested a bidirectional relationship between glycaemic control and periodontitis.  Treatment for periodontitis involves subgingival instrumentation, which is the professional removal of plaque, calculus, and debris from below the gumline using hand or ultrasonic instruments. This is known variously as scaling and root planing, mechanical debridement, or non-surgical periodontal treatment. Subgingival instrumentation is sometimes accompanied by local or systemic antimicrobials, and occasionally by surgical intervention to cut away gum tissue when periodontitis is severe. This review is part one of an update of a review published in 2010 and first updated in 2015, and evaluates periodontal treatment versus no intervention or usual care.  OBJECTIVES: To investigate the effects of periodontal treatment on glycaemic control in people with diabetes mellitus and periodontitis. SEARCH METHODS: An information specialist searched six bibliographic databases up to 7 September 2021 and additional search methods were used to identify published, unpublished, and ongoing studies.  SELECTION CRITERIA: We searched for randomised controlled trials (RCTs) of people with type 1 or type 2 diabetes mellitus and a diagnosis of periodontitis that compared subgingival instrumentation (sometimes with surgical treatment or adjunctive antimicrobial therapy or both) to no active intervention or 'usual care' (oral hygiene instruction, education or support interventions, and/or supragingival scaling (also known as PMPR, professional mechanical plaque removal)). To be included, the RCTs had to have lasted at least 3 months and have measured HbA1c (glycated haemoglobin). DATA COLLECTION AND ANALYSIS: At least two review authors independently examined the titles and abstracts retrieved by the search, selected the included trials, extracted data from included trials, and assessed included trials for risk of bias. Where necessary and possible, we attempted to contact study authors. Our primary outcome was blood glucose levels measured as glycated (glycosylated) haemoglobin assay (HbA1c), which can be reported as a percentage of total haemoglobin or as millimoles per mole (mmol/mol). Our secondary outcomes included adverse effects, periodontal indices (bleeding on probing, clinical attachment level, gingival index, plaque index, and probing pocket depth), quality of life, cost implications, and diabetic complications. MAIN RESULTS: We included 35 studies, which randomised 3249 participants to periodontal treatment or control. All studies used a parallel-RCT design and followed up participants for between 3 and 12 months. The studies focused on people with type 2 diabetes, other than one study that included participants with type 1 or type 2 diabetes. Most studies were mixed in terms of whether metabolic control of participants at baseline was good, fair, or poor. Most studies were carried out in secondary care.  We assessed two studies as being at low risk of bias, 14 studies at high risk of bias, and the risk of bias in 19 studies was unclear. We undertook a sensitivity analysis for our primary outcome based on studies at low risk of bias and this supported the main findings. Moderate-certainty evidence from 30 studies (2443 analysed participants) showed an absolute reduction in HbA1c of 0.43% (4.7 mmol/mol) 3 to 4 months after treatment of periodontitis (95% confidence interval (CI) -0.59% to -0.28%; -6.4 mmol/mol to -3.0 mmol/mol). Similarly, after 6 months, we found an absolute reduction in HbA1c of 0.30% (3.3 mmol/mol) (95% CI -0.52% to -0.08%; -5.7 mmol/mol to -0.9 mmol/mol; 12 studies, 1457 participants), and after 12 months, an absolute reduction of 0.50% (5.4 mmol/mol) (95% CI -0.55% to -0.45%; -6.0 mmol/mol to -4.9 mmol/mol; 1 study, 264 participants). Studies that measured adverse effects generally reported that no or only mild harms occurred, and any serious adverse events were similar in intervention and control arms. However, adverse effects of periodontal treatments were not evaluated in most studies. AUTHORS' CONCLUSIONS: Our 2022 update of this review has doubled the number of included studies and participants, which has led to a change in our conclusions about the primary outcome of glycaemic control and in our level of certainty in this conclusion. We now have moderate-certainty evidence that periodontal treatment using subgingival instrumentation improves glycaemic control in people with both periodontitis and diabetes by a clinically significant amount when compared to no treatment or usual care. Further trials evaluating periodontal treatment versus no treatment/usual care are unlikely to change the overall conclusion reached in this review.


Assuntos
Diabetes Mellitus Tipo 2 , Periodontite , Diabetes Mellitus Tipo 2/complicações , Hemoglobinas Glicadas/metabolismo , Controle Glicêmico , Humanos , Índice Periodontal
8.
Cochrane Database Syst Rev ; 12: CD006386, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34929047

RESUMO

BACKGROUND: Oral cavity and oropharyngeal cancers are the most common cancers arising in the head and neck. Treatment of oral cavity cancer is generally surgery followed by radiotherapy, whereas oropharyngeal cancers, which are more likely to be advanced at the time of diagnosis, are managed with radiotherapy or chemoradiation. Surgery for oral cancers can be disfiguring and both surgery and radiotherapy have significant functional side effects. The development of new chemotherapy agents, new combinations of agents and changes in the relative timing of surgery, radiotherapy, and chemotherapy treatments may potentially bring about increases in both survival and quality of life for this group of patients. This review updates one last published in 2011. OBJECTIVES: To determine whether chemotherapy, in addition to radiotherapy and/or surgery for oral cavity and oropharyngeal squamous cell carcinoma results in improved overall survival, improved disease-free survival and/or improved locoregional control, when incorporated as either induction therapy given prior to locoregional treatment (i.e. radiotherapy or surgery), concurrent with radiotherapy or in the adjuvant (i.e. after locoregional treatment with radiotherapy or surgery) setting. SEARCH METHODS: An information specialist searched 4 bibliographic databases up to 15 September 2021 and used additional search methods to identify published, unpublished and ongoing studies. SELECTION CRITERIA: We included randomised controlled trials (RCTs) where more than 50% of participants had primary tumours in the oral cavity or oropharynx, and that evaluated the addition of chemotherapy to other treatments such as radiotherapy and/or surgery, or compared two or more chemotherapy regimens or modes of administration. DATA COLLECTION AND ANALYSIS: For this update, we assessed the new included trials for their risk of bias and at least two authors extracted data from them. Our primary outcome was overall survival (time to death from any cause). Secondary outcomes were disease-free survival (time to disease recurrence or death from any cause) and locoregional control (response to primary treatment). We contacted trial authors for additional information or clarification when necessary. MAIN RESULTS: We included 100 studies with 18,813 participants. None of the included trials were at low risk of bias.  For induction chemotherapy, we reported the results for contemporary regimens that will be of interest to clinicians and people being treated for oral cavity and oropharyngeal cancers. Overall, there is insufficient evidence to clearly demonstrate a survival benefit from induction chemotherapy with platinum plus 5-fluorouracil prior to radiotherapy (hazard ratio (HR) for death 0.85, 95% confidence interval (CI) 0.70 to 1.04, P = 0.11; 7427 participants, 5 studies; moderate-certainty evidence), prior to surgery (HR for death 1.06, 95% CI 0.71 to 1.60, P = 0.77; 198 participants, 1 study; low-certainty evidence) or prior to concurrent chemoradiation (CRT) with cisplatin (HR for death 0.71, 95% CI 0.37 to 1.35, P = 0.30; 389 participants, 2 studies; low-certainty evidence). There is insufficient evidence to support the use of an induction chemotherapy regimen with cisplatin plus 5-fluorouracil plus docetaxel prior to CRT with cisplatin (HR for death 1.08, 95% CI 0.80 to 1.44, P = 0.63; 760 participants, 3 studies; low-certainty evidence).  There is insufficient evidence to support the use of adjuvant chemotherapy over observation only following surgery (HR for death 0.95, 95% CI 0.73 to 1.22, P = 0.67; 353 participants, 5 studies; moderate-certainty evidence). Among studies that compared post-surgical adjuvant CRT, as compared to post-surgical RT, adjuvant CRT showed a survival benefit (HR 0.84, 95% CI 0.72 to 0.98, P = 0.03; 1097 participants, 4 studies; moderate-certainty evidence). Primary treatment with CRT, as compared to radiotherapy alone,  was associated with a reduction in the risk of death (HR for death 0.74, 95% CI 0.67 to 0.83, P < 0.00001; 2852 participants, 24 studies; moderate-certainty evidence).  AUTHORS' CONCLUSIONS: The results of this review demonstrate that chemotherapy in the curative-intent treatment of oral cavity and oropharyngeal cancers only seems to be of benefit when used in specific circumstances together with locoregional treatment. The  evidence does not show a clear survival benefit from the use of induction chemotherapy prior to radiotherapy, surgery or CRT. Adjuvant CRT reduces the risk of death by 16%, as compared to radiotherapy alone. Concurrent chemoradiation as compared to radiation alone is associated with a greater than 20% improvement in overall survival; however, additional research is required to inform how the specific chemotherapy regimen may influence this benefit.


Assuntos
Neoplasias Bucais , Neoplasias Orofaríngeas , Quimiorradioterapia Adjuvante , Humanos , Neoplasias Bucais/tratamento farmacológico , Recidiva Local de Neoplasia , Neoplasias Orofaríngeas/tratamento farmacológico
9.
Br Dent J ; 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815483

RESUMO

Introduction The COVID-19 pandemic brought about seismic change for dentistry including the direction to provide remote advice and prescribe analgesia and antimicrobials. The possibilities for care have widened, but the impact of both restrictions and remobilisation on antibiotic prescribing is not known.Aims To report the impact of COVID-19 restrictions and remobilisation on dental antibiotic prescriptions and explore dentists' intentions and attitudes towards antibiotic prescribing.Design and setting Public Health Scotland national prescribing and claims data are reported alongside an online survey of Scottish general and public health service dentists including closed and open-ended questions.Results Antibiotic prescribing rose by 49% following the suspension of routine dental care, to a peak of 34,993 antibiotics (July 2020). The data also show that since the remobilisation of NHS dental care, antibiotic prescribing remains raised at levels around 28% higher than pre-pandemic. The survey highlights dentists' frustrations and concerns about this increased use of antibiotics. Most dentists intend to reduce their prescribing; however, significant challenges to this being realised were raised.Conclusions The previous success within dentistry to protect against the development of antimicrobial resistance has suffered a knock-back during the pandemic. A renewed focus on reducing unnecessary antibiotics within dentistry is required but, crucially, needs to be approached sensitively alongside the current backdrop of challenges within the service.

10.
Cochrane Database Syst Rev ; 7: CD013039, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34280957

RESUMO

BACKGROUND: Traditionally, cavitated carious lesions and those extending into dentine have been treated by 'complete' removal of carious tissue, i.e. non-selective removal and conventional restoration (CR). Alternative strategies for managing cavitated or dentine carious lesions remove less or none of the carious tissue and include selective carious tissue removal (or selective excavation (SE)), stepwise carious tissue removal (SW), sealing carious lesions using sealant materials, sealing using preformed metal crowns (Hall Technique, HT), and non-restorative cavity control (NRCC). OBJECTIVES: To determine the comparative effectiveness of interventions (CR, SE, SW, sealing of carious lesions using sealant materials or preformed metal crowns (HT), or NRCC) to treat carious lesions conventionally considered to require restorations (cavitated or micro-cavitated lesions, or occlusal lesions that are clinically non-cavitated but clinically/radiographically extend into dentine) in primary or permanent teeth with vital (sensitive) pulps. SEARCH METHODS: An information specialist searched four bibliographic databases to 21 July 2020 and used additional search methods to identify published, unpublished and ongoing studies.  SELECTION CRITERIA: We included randomised clinical trials comparing different levels of carious tissue removal, as listed above, against each other, placebo, or no treatment. Participants had permanent or primary teeth (or both), and vital pulps (i.e. no irreversible pulpitis/pulp necrosis), and carious lesions conventionally considered to need a restoration (i.e. cavitated lesions, or non- or micro-cavitated lesions radiographically extending into dentine). The primary outcome was failure, a composite measure of pulp exposure, endodontic therapy, tooth extraction, and restorative complications (including resealing of sealed lesions). DATA COLLECTION AND ANALYSIS: Pairs of review authors independently screened search results, extracted data, and assessed the risk of bias in the studies and the overall certainty of the evidence using GRADE criteria. We measured treatment effects through analysing dichotomous outcomes (presence/absence of complications) and expressing them as odds ratios (OR) with 95% confidence intervals (CI). For failure in the subgroup of deep lesions, we used network meta-analysis to assess and rank the relative effectiveness of different interventions. MAIN RESULTS: We included 27 studies with 3350 participants and 4195 teeth/lesions, which were conducted in 11 countries and published between 1977 and 2020. Twenty-four studies used a parallel-group design and three were split-mouth. Two studies included adults only, 20 included children/adolescents only and five included both. Ten studies evaluated permanent teeth, 16 evaluated primary teeth and one evaluated both. Three studies treated non-cavitated lesions; 12 treated cavitated, deep lesions, and 12 treated cavitated but not deep lesions or lesions of varying depth.  Seventeen studies compared conventional treatment (CR) with a less invasive treatment: SE (8), SW (4), two HT (2), sealing with sealant materials (4) and NRCC (1). Other comparisons were: SE versus HT (2); SE versus SW (4); SE versus sealing  with sealant materials (2); sealant materials versus no sealing (2).  Follow-up times varied from no follow-up (pulp exposure during treatment) to 120 months, the most common being 12 to 24 months. All studies were at overall high risk of bias. Effect of interventions Sealing using sealants versus other interventions for non-cavitated or cavitated but not deep lesions There was insufficient evidence of a difference between sealing with sealants and CR (OR 5.00, 95% CI 0.51 to 49.27; 1 study, 41 teeth, permanent teeth, cavitated), sealing versus SE (OR 3.11, 95% CI 0.11 to 85.52; 2 studies, 82 primary teeth, cavitated) or sealing versus no treatment (OR 0.05, 95% CI 0.00 to 2.71; 2 studies, 103 permanent teeth, non-cavitated), but we assessed all as very low-certainty evidence. HT, CR, SE, NRCC for cavitated, but not deep lesions in primary teeth The odds of failure may be higher for CR than HT (OR 8.35, 95% CI 3.73 to 18.68; 2 studies, 249 teeth; low-certainty evidence) and lower for HT than NRCC (OR 0.19, 95% CI 0.05 to 0.74; 1 study, 84 teeth, very low-certainty evidence). There was insufficient evidence of a difference between SE versus HT (OR 8.94, 95% CI 0.57 to 139.67; 2 studies, 586 teeth) or CR versus NRCC (OR 1.16, 95% CI 0.50 to 2.71; 1 study, 102 teeth), both very low-certainty evidence. CR, SE, SW for deep lesions The odds of failure were higher for CR than SW in permanent teeth (OR 2.06, 95% CI 1.34 to 3.17; 3 studies, 398 teeth; moderate-certainty evidence), but not primary teeth (OR 2.43, 95% CI 0.65 to 9.12; 1 study, 63 teeth; very low-certainty evidence). The odds of failure may be higher for CR than SE in permanent teeth (OR 11.32, 95% CI 1.97 to 65.02; 2 studies, 179 teeth) and primary teeth (OR 4.43, 95% CI 1.04 to 18.77; 4 studies, 265 teeth), both very low-certainty evidence. Notably, two studies compared CR versus SE in cavitated, but not deep lesions, with insufficient evidence of a difference in outcome (OR 0.62, 95% CI 0.21 to 1.88; 204 teeth; very low-certainty evidence). The odds of failure were higher for SW than SE in permanent teeth (OR 2.25, 95% CI 1.33 to 3.82; 3 studies, 371 teeth; moderate-certainty evidence), but not primary teeth (OR 2.05, 95% CI 0.49 to 8.62; 2 studies, 126 teeth; very low-certainty evidence). For deep lesions, a network meta-analysis showed the probability of failure to be greatest for CR compared with SE, SW and HT. AUTHORS' CONCLUSIONS: Compared with CR, there were lower numbers of failures with HT and SE in the primary dentition, and with SE and SW in the permanent dentition. Most studies showed high risk of bias and limited precision of estimates due to small sample size and typically limited numbers of failures, resulting in assessments of low or very low certainty of evidence for most comparisons.


Assuntos
Coroas , Tratamento Dentário Restaurador sem Trauma/métodos , Cárie Dentária/terapia , Selantes de Fossas e Fissuras/uso terapêutico , Adolescente , Adulto , Viés , Criança , Pré-Escolar , Cárie Dentária/patologia , Falha de Restauração Dentária/estatística & dados numéricos , Dentina , Dentição Permanente , Humanos , Pessoa de Meia-Idade , Metanálise em Rede , Ensaios Clínicos Controlados Aleatórios como Assunto , Dente Decíduo
11.
Cochrane Database Syst Rev ; 6: CD014546, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34124773

RESUMO

BACKGROUND: The detection and diagnosis of caries at the initial (non-cavitated) and moderate (enamel) levels of severity is fundamental to achieving and maintaining good oral health and prevention of oral diseases. An increasing array of methods of early caries detection have been proposed that could potentially support traditional methods of detection and diagnosis. Earlier identification of disease could afford patients the opportunity of less invasive treatment with less destruction of tooth tissue, reduce the need for treatment with aerosol-generating procedures, and potentially result in a reduced cost of care to the patient and to healthcare services. OBJECTIVES: To determine the diagnostic accuracy of different visual classification systems for the detection and diagnosis of non-cavitated coronal dental caries for different purposes (detection and diagnosis) and in different populations (children or adults). SEARCH METHODS: Cochrane Oral Health's Information Specialist undertook a search of the following databases: MEDLINE Ovid (1946 to 30 April 2020); Embase Ovid (1980 to 30 April 2020); US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov, to 30 April 2020); and the World Health Organization International Clinical Trials Registry Platform (to 30 April 2020). We studied reference lists as well as published systematic review articles. SELECTION CRITERIA: We included diagnostic accuracy study designs that compared a visual classification system (index test) with a reference standard (histology, excavation, radiographs). This included cross-sectional studies that evaluated the diagnostic accuracy of single index tests and studies that directly compared two or more index tests. Studies reporting at both the patient or tooth surface level were included. In vitro and in vivo studies were considered. Studies that explicitly recruited participants with caries into dentine or frank cavitation were excluded. We also excluded studies that artificially created carious lesions and those that used an index test during the excavation of dental caries to ascertain the optimum depth of excavation. DATA COLLECTION AND ANALYSIS: We extracted data independently and in duplicate using a standardised data extraction and quality assessment form based on QUADAS-2 specific to the review context. Estimates of diagnostic accuracy were determined using the bivariate hierarchical method to produce summary points of sensitivity and specificity with 95% confidence intervals (CIs) and regions, and 95% prediction regions. The comparative accuracy of different classification systems was conducted based on indirect comparisons. Potential sources of heterogeneity were pre-specified and explored visually and more formally through meta-regression. MAIN RESULTS: We included 71 datasets from 67 studies (48 completed in vitro) reporting a total of 19,590 tooth sites/surfaces. The most frequently reported classification systems were the International Caries Detection and Assessment System (ICDAS) (36 studies) and Ekstrand-Ricketts-Kidd (ERK) (15 studies). In reporting the results, no distinction was made between detection and diagnosis. Only two studies were at low risk of bias across all four domains, and 15 studies were at low concern for applicability across all three domains. The patient selection domain had the highest proportion of high risk of bias studies (49 studies). Four studies were assessed at high risk of bias for the index test domain, nine for the reference standard domain, and seven for the flow and timing domain. Due to the high number of studies on extracted teeth concerns regarding applicability were high for the patient selection and index test domains (49 and 46 studies respectively). Studies were synthesised using a hierarchical bivariate method for meta-analysis. There was substantial variability in the results of the individual studies: sensitivities ranged from 0.16 to 1.00 and specificities from 0 to 1.00. For all visual classification systems the estimated summary sensitivity and specificity point was 0.86 (95% CI 0.80 to 0.90) and 0.77 (95% CI 0.72 to 0.82) respectively, diagnostic odds ratio (DOR) 20.38 (95% CI 14.33 to 28.98). In a cohort of 1000 tooth surfaces with 28% prevalence of enamel caries, this would result in 40 being classified as disease free when enamel caries was truly present (false negatives), and 163 being classified as diseased in the absence of enamel caries (false positives). The addition of test type to the model did not result in any meaningful difference to the sensitivity or specificity estimates (Chi2(4) = 3.78, P = 0.44), nor did the addition of primary or permanent dentition (Chi2(2) = 0.90, P = 0.64). The variability of results could not be explained by tooth surface (occlusal or approximal), prevalence of dentinal caries in the sample, nor reference standard. Only one study intentionally included restored teeth in its sample and no studies reported the inclusion of sealants. We rated the certainty of the evidence as low, and downgraded two levels in total for risk of bias due to limitations in the design and conduct of the included studies, indirectness arising from the in vitro studies, and inconsistency of results. AUTHORS' CONCLUSIONS: Whilst the confidence intervals for the summary points of the different visual classification systems indicated reasonable performance, they do not reflect the confidence that one can have in the accuracy of assessment using these systems due to the considerable unexplained heterogeneity evident across the studies. The prediction regions in which the sensitivity and specificity of a future study should lie are very broad, an important consideration when interpreting the results of this review. Should treatment be provided as a consequence of a false-positive result then this would be non-invasive, typically the application of fluoride varnish where it was not required, with low potential for an adverse event but healthcare resource and finance costs. Despite the robust methodology applied in this comprehensive review, the results should be interpreted with some caution due to shortcomings in the design and execution of many of the included studies. Studies to determine the diagnostic accuracy of methods to detect and diagnose caries in situ are particularly challenging. Wherever possible future studies should be carried out in a clinical setting, to provide a realistic assessment of performance within the oral cavity with the challenges of plaque, tooth staining, and restorations, and consider methods to minimise bias arising from the use of imperfect reference standards in clinical studies.


Assuntos
Cárie Dentária/diagnóstico , Esmalte Dentário , Diagnóstico Precoce , Palpação/métodos , Exame Físico/métodos , Adulto , Viés , Criança , Intervalos de Confiança , Humanos , Sensibilidade e Especificidade
12.
BMJ Open Qual ; 10(2)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33849904

RESUMO

OBJECTIVES: Ensuring that healthcare is patient-centred, safe and harm free is the cornerstone of the NHS. The Scottish Patient Safety Programme (SPSP) is a national initiative to support the provision of safe, high-quality care. SPSP promotes a coordinated approach to quality improvement (QI) in primary care by providing evidence-based methods, such as the Institute for Healthcare Improvement's Breakthrough Series Collaborative methodology. These methods are relatively untested within dentistry. The aim of this study was to evaluate the impact to inform the development and implementation of improvement collaboratives as a means for QI in primary care dentistry. DESIGN: A multimethod study underpinned by the Theoretical Domains Framework and the Kirkpatrick model. Quantitative data were collected using baseline and follow-up questionnaires, designed to explore beliefs and behaviours towards improving quality in practice. Qualitative data were gathered using interviews with dental team members and practice-based case studies. RESULTS: One hundred and eleven dental team members completed the baseline questionnaire. Follow-up questionnaires were returned by 79 team members. Twelve practices, including two case studies, participated in evaluation interviews. Findings identified positive beliefs and increased knowledge and skills towards QI, as well as increased confidence about using QI methodologies in practice. Barriers included time, poor patient and team engagement, communication and leadership. Facilitators included team working, clear roles, strong leadership, training, peer support and visible benefits. Participants' knowledge and skills were identified as an area for improvement. CONCLUSIONS: Findings demonstrate increased knowledge, skills and confidence in relation to QI methodology and highlight areas for improvement. This is an example of partnership working between the Scottish Government and NHSScotland towards a shared ambition to provide safe care to every patient. More work is required to evaluate the sustainability and transferability of improvement collaboratives as a means for QI in dentistry and wider primary care.


Assuntos
Atenção Primária à Saúde , Melhoria de Qualidade , Odontologia , Humanos , Liderança , Qualidade da Assistência à Saúde
13.
Cochrane Database Syst Rev ; 3: CD014547, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33724442

RESUMO

BACKGROUND: Caries is one of the most prevalent, preventable conditions worldwide. A wide variety of management options are available at different thresholds of disease, ranging from non-operative preventive strategies such as improved oral hygiene, reduced sugar diet, and application of topical fluoride, to minimally invasive treatments for early lesions which are limited to enamel, through to selective removal and restoration for extensive lesions. The cornerstone of caries detection is a visual and tactile dental examination, however, an increasing array of methods of caries lesion detection have been proposed that could potentially support traditional methods of detection and diagnosis. Earlier identification of disease could afford patients the opportunity of less invasive treatment with less destruction of tooth tissue, reduce the need for treatment with aerosol-generating procedures, and potentially result in a reduced cost of care to the patient and to healthcare services. OBJECTIVES: Our primary objective was to determine the diagnostic accuracy of different electrical conductance devices for the detection and diagnosis of non-cavitated coronal dental caries in different populations (children, adolescents, and adults) and when tested against different reference standards. SEARCH METHODS: Cochrane Oral Health's Information Specialist undertook a search of the following databases: MEDLINE Ovid (1946 to 26 April 2019); Embase Ovid (1980 to 26 April 2019); US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov, to 26 April 2019); and the World Health Organization International Clinical Trials Registry Platform (to 26 April 2019). We studied reference lists as well as published systematic review articles. SELECTION CRITERIA: We included diagnostic accuracy studies that compared electrical conductance devices with a reference standard of histology or an enhanced visual examination. This included prospective studies that evaluated the diagnostic accuracy of single index tests and studies that directly compared two or more index tests. We included studies using previously extracted teeth or those that recruited participants with teeth believed to be sound or with early lesions limited to enamel. Studies that explicitly recruited participants with more advanced lesions that were obviously into dentine or frankly cavitated were excluded. DATA COLLECTION AND ANALYSIS: Two review authors extracted data independently using a piloted study data extraction form based on the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Sensitivity and specificity with 95% confidence intervals (CIs) were reported for each study. This information was displayed as coupled forest plots, and plotted as summary receiver operating characteristic (SROC) plots, displaying the sensitivity-specificity points for each study. Due to variability in thresholds we estimated diagnostic accuracy using hierarchical summary receiver operating characteristic (HSROC) methods. MAIN RESULTS: We included seven studies reporting a total of 719 tooth sites or surfaces, with an overall prevalence of the target condition of 73% (528 tooth sites or surfaces). The included studies evaluated two index tests: the electronic caries monitor (ECM) (four studies, 475 tooth surfaces) and CarieScan Pro (three studies, 244 tooth surfaces). Six studies used histology as the reference standard, one used an enhanced visual examination. No study was considered to be at low risk of bias across all four domains or low concern for applicability or both. All studies were at high (five studies) or unclear (two studies) risk of bias for the patient selection domain. We judged two studies to be at unclear risk of bias for the index test domain, and one study to be at high risk of bias for the reference standard and flow and timing domains. We judged three studies to be at low concern for applicability for patient selection, and all seven studies to be of low concern for reference standard and flow and timing domains. Studies were synthesised using a hierarchical method for meta-analysis. There was variability in the results of the individual studies, with sensitivities which ranged from 0.55 to 0.98 and specificities from 0 to 1.00. These extreme values of specificity may be explained by a low number of healthy tooth surfaces in the included samples. The diagnostic odds ratio (DOR) was 15.65 (95% CI 1.43 to 171.15), and indicative of the variability in the included studies. Through meta-regression we observed no meaningful difference in accuracy according to device type or dentition. Due to the small number of studies we were unable to formally investigate other potential sources of heterogeneity. We judged the certainty of the evidence as very low, and downgraded for risk of bias due to limitations in the design and conduct of the included studies, imprecision arising from the relatively small number of surfaces studied, and inconsistency due to the variability of results. AUTHORS' CONCLUSIONS: The design and conduct of studies to determine the diagnostic accuracy of methods to detect and diagnose caries in situ is particularly challenging. The evidence base to support the detection and diagnosis of caries with electrical conductance devices is sparse. Newer electrical conductance devices show promise and further research at the enamel caries threshold using a robust study design to minimise bias is warranted. In terms of applicability, any future studies should be carried out in a clinical setting to provide a realistic assessment within the oral cavity where plaque, staining, and restorations can be problematic.


Assuntos
Cárie Dentária/diagnóstico , Condutividade Elétrica , Adolescente , Adulto , Criança , Intervalos de Confiança , Instrumentos Odontológicos , Humanos , Estudos Prospectivos , Padrões de Referência , Sensibilidade e Especificidade
14.
Cochrane Database Syst Rev ; 3: CD014545, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720395

RESUMO

BACKGROUND: The detection and diagnosis of caries at the earliest opportunity is fundamental to the preservation of tooth tissue and maintenance of oral health. Radiographs have traditionally been used to supplement the conventional visual-tactile clinical examination. Accurate, timely detection and diagnosis of early signs of disease could afford patients the opportunity of less invasive treatment with less destruction of tooth tissue, reduce the need for treatment with aerosol-generating procedures, and potentially result in a reduced cost of care to the patient and to healthcare services. OBJECTIVES: To determine the diagnostic accuracy of different dental imaging methods to inform the detection and diagnosis of non-cavitated enamel only coronal dental caries. SEARCH METHODS: Cochrane Oral Health's Information Specialist undertook a search of the following databases: MEDLINE Ovid (1946 to 31 December 2018); Embase Ovid (1980 to 31 December 2018); US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov, to 31 December 2018); and the World Health Organization International Clinical Trials Registry Platform (to 31 December 2018). We studied reference lists as well as published systematic review articles. SELECTION CRITERIA: We included diagnostic accuracy study designs that compared a dental imaging method with a reference standard (histology, excavation, enhanced visual examination), studies that evaluated the diagnostic accuracy of single index tests, and studies that directly compared two or more index tests. Studies reporting at both the patient or tooth surface level were included. In vitro and in vivo studies were eligible for inclusion. Studies that explicitly recruited participants with more advanced lesions that were obviously into dentine or frankly cavitated were excluded. We also excluded studies that artificially created carious lesions and those that used an index test during the excavation of dental caries to ascertain the optimum depth of excavation. DATA COLLECTION AND ANALYSIS: Two review authors extracted data independently and in duplicate using a standardised data extraction form and quality assessment based on QUADAS-2 specific to the clinical context. Estimates of diagnostic accuracy were determined using the bivariate hierarchical method to produce summary points of sensitivity and specificity with 95% confidence regions. Comparative accuracy of different radiograph methods was conducted based on indirect and direct comparisons between methods. Potential sources of heterogeneity were pre-specified and explored visually and more formally through meta-regression. MAIN RESULTS: We included 104 datasets from 77 studies reporting a total of 15,518 tooth sites or surfaces. The most frequently reported imaging methods were analogue radiographs (55 datasets from 51 studies) and digital radiographs (42 datasets from 40 studies) followed by cone beam computed tomography (CBCT) (7 datasets from 7 studies). Only 17 studies were of an in vivo study design, carried out in a clinical setting. No studies were considered to be at low risk of bias across all four domains but 16 studies were judged to have low concern for applicability across all domains. The patient selection domain had the largest number of studies judged to be at high risk of bias (43 studies); the index test, reference standard, and flow and timing domains were judged to be at high risk of bias in 30, 12, and 7 studies respectively. Studies were synthesised using a hierarchical bivariate method for meta-analysis. There was substantial variability in the results of the individual studies, with sensitivities that ranged from 0 to 0.96 and specificities from 0 to 1.00. For all imaging methods the estimated summary sensitivity and specificity point was 0.47 (95% confidence interval (CI) 0.40 to 0.53) and 0.88 (95% CI 0.84 to 0.92), respectively. In a cohort of 1000 tooth surfaces with a prevalence of enamel caries of 63%, this would result in 337 tooth surfaces being classified as disease free when enamel caries was truly present (false negatives), and 43 tooth surfaces being classified as diseased in the absence of enamel caries (false positives). Meta-regression indicated that measures of accuracy differed according to the imaging method (Chi2(4) = 32.44, P < 0.001), with the highest sensitivity observed for CBCT, and the highest specificity observed for analogue radiographs. None of the specified potential sources of heterogeneity were able to explain the variability in results. No studies included restored teeth in their sample or reported the inclusion of sealants. We rated the certainty of the evidence as low for sensitivity and specificity and downgraded two levels in total for risk of bias due to limitations in the design and conduct of the included studies, indirectness arising from the in vitro studies, and the observed inconsistency of the results. AUTHORS' CONCLUSIONS: The design and conduct of studies to determine the diagnostic accuracy of methods to detect and diagnose caries in situ are particularly challenging. Low-certainty evidence suggests that imaging for the detection or diagnosis of early caries may have poor sensitivity but acceptable specificity, resulting in a relatively high number of false-negative results with the potential for early disease to progress. If left untreated, the opportunity to provide professional or self-care practices to arrest or reverse early caries lesions will be missed. The specificity of lesion detection is however relatively high, and one could argue that initiation of non-invasive management (such as the use of topical fluoride), is probably of low risk. CBCT showed superior sensitivity to analogue or digital radiographs but has very limited applicability to the general dental practitioner. However, given the high-radiation dose, and potential for caries-like artefacts from existing restorations, its use cannot be justified in routine caries detection. Nonetheless, if early incidental carious lesions are detected in CBCT scans taken for other purposes, these should be reported. CBCT has the potential to be used as a reference standard in diagnostic studies of this type. Despite the robust methodology applied in this comprehensive review, the results should be interpreted with some caution due to shortcomings in the design and execution of many of the included studies. Future research should evaluate the comparative accuracy of different methods, be undertaken in a clinical setting, and focus on minimising bias arising from the use of imperfect reference standards in clinical studies.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Conjuntos de Dados como Assunto , Cárie Dentária/diagnóstico por imagem , Radiografia Dentária/métodos , Adulto , Viés , Criança , Tomografia Computadorizada de Feixe Cônico/estatística & dados numéricos , Dentição Permanente , Reações Falso-Negativas , Reações Falso-Positivas , Humanos , Radiografia Dentária/estatística & dados numéricos , Radiografia Dentária Digital/estatística & dados numéricos , Padrões de Referência , Sensibilidade e Especificidade , Dente Decíduo
15.
Cochrane Database Syst Rev ; 1: CD013855, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33502759

RESUMO

BACKGROUND: Caries is one of the most prevalent and preventable conditions worldwide. If identified early enough then non-invasive techniques can be applied, and therefore this review focusses on early caries involving the enamel surface of the tooth. The cornerstone of caries detection and diagnosis is a visual and tactile dental examination, although alternative approaches are available. These include illumination-based devices that could potentially support the dental examination. There are three categories of illumination devices that exploit various methods of application and interpretation, each primarily defined by different wavelengths, optical coherence tomography (OCT), near-infrared (NIR), and fibre-optic technology, which incorporates more recently developed digital fibre optics (FOTI/DIFOTI). OBJECTIVES: To estimate the diagnostic test accuracy of different illumination tests for the detection and diagnosis of enamel caries in children or adults. We also planned to explore the following potential sources of heterogeneity: in vitro or in vivo studies with different reference standards; tooth surface (occlusal, proximal, smooth surface, or adjacent to a restoration); single or multiple sites of assessment on a tooth surface; and the prevalence of caries into dentine. SEARCH METHODS: Cochrane Oral Health's Information Specialist undertook a search of the following databases: MEDLINE Ovid (1946 to 15 February 2019); Embase Ovid (1980 to 15 February 2019); US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov, to 15 February 2019); and the World Health Organization International Clinical Trials Registry Platform (to 15 February 2019). We studied reference lists as well as published systematic review articles. SELECTION CRITERIA: We included diagnostic accuracy study designs that compared the use of illumination-based devices with a reference standard (histology, enhanced visual examination with or without radiographs, or operative excavation). These included prospective studies that evaluated the diagnostic accuracy of a single index test and studies that directly compared two or more index tests. Both in vitro and in vivo studies of primary and permanent teeth were eligible for inclusion. We excluded studies that explicitly recruited participants with caries into dentine or frank cavitation. We also excluded studies that artificially created carious lesions and those that used an index test during the excavation of dental caries to ascertain the optimum depth of excavation. DATA COLLECTION AND ANALYSIS: Two review authors extracted data independently and in duplicate using a standardised data extraction form and quality assessment based on QUADAS-2 specific to the clinical context. Estimates of diagnostic accuracy were determined using the bivariate hierarchical method to produce summary points of sensitivity and specificity with 95% confidence regions. The comparative accuracy of different illumination devices was conducted based on indirect and direct comparisons between methods. Potential sources of heterogeneity were pre-specified and explored visually and more formally through meta-regression. MAIN RESULTS: We included 24 datasets from 23 studies that evaluated 16,702 tooth surfaces. NIR was evaluated in 6 datasets (673 tooth surfaces), OCT in 10 datasets (1171 tooth surfaces), and FOTI/DIFOTI in 8 datasets (14,858 tooth surfaces). The participant selection domain had the largest number of studies judged at high risk of bias (16 studies). Conversely, for the index test, reference standard, and flow and timing domains the majority of studies were judged to be at low risk of bias (16, 12, and 16 studies respectively). Concerns regarding the applicability of the evidence were judged as high or unclear for all domains. Notably, 14 studies were judged to be of high concern for participant selection, due to selective participant recruitment, a lack of independent examiners, and the use of an in vitro study design. The summary estimate across all the included illumination devices was sensitivity 0.75 (95% confidence interval (CI) 0.62 to 0.85) and specificity 0.87 (95% CI 0.82 to 0.92), with a diagnostic odds ratio of 21.52 (95% CI 10.89 to 42.48). In a cohort of 1000 tooth surfaces with a prevalence of enamel caries of 57%, this would result in 142 tooth surfaces being classified as disease free when enamel caries was truly present (false negatives), and 56 tooth surfaces being classified as diseased in the absence of enamel caries (false positives). A formal comparison of the accuracy according to device type indicated a difference in sensitivity and/or specificity (Chi2(4) = 34.17, P < 0.01). Further analysis indicated a difference in the sensitivity of the different devices (Chi2(2) = 31.24, P < 0.01) with a higher sensitivity of 0.94 (95% CI 0.88 to 0.97) for OCT compared to NIR 0.58 (95% CI 0.46 to 0.68) and FOTI/DIFOTI 0.47 (95% CI 0.35 to 0.59), but no meaningful difference in specificity (Chi2(2) = 3.47, P = 0.18). In light of these results, we planned to formally assess potential sources of heterogeneity according to device type, but due to the limited number of studies for each device type we were unable to do so. For interpretation, we presented the coupled forest plots for each device type according to the potential source of heterogeneity. We rated the certainty of the evidence as low and downgraded two levels in total due to avoidable and unavoidable study limitations in the design and conduct of studies, indirectness arising from the in vitro studies, and imprecision of the estimates. AUTHORS' CONCLUSIONS: Of the devices evaluated, OCT appears to show the most potential, with superior sensitivity to NIR and fibre-optic devices. Its benefit lies as an add-on tool to support the conventional oral examination to confirm borderline cases in cases of clinical uncertainty. OCT is not currently available to the general dental practitioner, and so further research and development are necessary. FOTI and NIR are more readily available and easy to use; however, they show limitations in their ability to detect enamel caries but may be considered successful in the identification of sound teeth. Future studies should strive to avoid research waste by ensuring that recruitment is conducted in such a way as to minimise selection bias and that studies are clearly and comprehensively reported. In terms of applicability, any future studies should be undertaken in a clinical setting that is reflective of the complexities encountered in caries assessment within the oral cavity.


Assuntos
Cárie Dentária/diagnóstico , Tecnologia de Fibra Óptica , Espectroscopia de Luz Próxima ao Infravermelho , Tomografia de Coerência Óptica , Transiluminação/métodos , Conjuntos de Dados como Assunto , Esmalte Dentário , Reações Falso-Negativas , Reações Falso-Positivas , Humanos , Padrões de Referência , Viés de Seleção , Sensibilidade e Especificidade
16.
Cochrane Database Syst Rev ; 12: CD013811, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33319353

RESUMO

BACKGROUND: Caries is one of the most prevalent and preventable conditions worldwide. If identified early enough then non-invasive techniques can be applied, and therefore this review focusses on early caries involving the enamel surface of the tooth. The cornerstone of caries detection is a visual and tactile dental examination, however alternative methods of detection are available, and these include fluorescence-based devices. There are three categories of fluorescence-based device each primarily defined by the different wavelengths they exploit; we have labelled these groups as red, blue, and green fluorescence. These devices could support the visual examination for the detection and diagnosis of caries at an early stage of decay. OBJECTIVES: Our primary objectives were to estimate the diagnostic test accuracy of fluorescence-based devices for the detection and diagnosis of enamel caries in children or adults. We planned to investigate the following potential sources of heterogeneity: tooth surface (occlusal, proximal, smooth surface or adjacent to a restoration); single point measurement devices versus imaging or surface assessment devices; and the prevalence of more severe disease in each study sample, at the level of caries into dentine. SEARCH METHODS: Cochrane Oral Health's Information Specialist undertook a search of the following databases: MEDLINE Ovid (1946 to 30 May 2019); Embase Ovid (1980 to 30 May 2019); US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov, to 30 May 2019); and the World Health Organization International Clinical Trials Registry Platform (to 30 May 2019). We studied reference lists as well as published systematic review articles. SELECTION CRITERIA: We included diagnostic accuracy study designs that compared a fluorescence-based device with a reference standard. This included prospective studies that evaluated the diagnostic accuracy of single index tests and studies that directly compared two or more index tests. Studies that explicitly recruited participants with caries into dentine or frank cavitation were excluded. DATA COLLECTION AND ANALYSIS: Two review authors extracted data independently using a piloted study data extraction form based on the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Sensitivity and specificity with 95% confidence intervals (CIs) were reported for each study. This information has been displayed as coupled forest plots and summary receiver operating characteristic (SROC) plots, displaying the sensitivity-specificity points for each study. We estimated diagnostic accuracy using hierarchical summary receiver operating characteristic (HSROC) methods. We reported sensitivities at fixed values of specificity (median 0.78, upper quartile 0.90). MAIN RESULTS: We included a total of 133 studies, 55 did not report data in the 2 x 2 format and could not be included in the meta-analysis. 79 studies which provided 114 datasets and evaluated 21,283 tooth surfaces were included in the meta-analysis. There was a high risk of bias for the participant selection domain. The index test, reference standard, and flow and timing domains all showed a high proportion of studies to be at low risk of bias. Concerns regarding the applicability of the evidence were high or unclear for all domains, the highest proportion being seen in participant selection. Selective participant recruitment, poorly defined diagnostic thresholds, and in vitro studies being non-generalisable to the clinical scenario of a routine dental examination were the main reasons for these findings. The dominance of in vitro studies also means that the information on how the results of these devices are used to support diagnosis, as opposed to pure detection, was extremely limited. There was substantial variability in the results which could not be explained by the different devices or dentition or other sources of heterogeneity that we investigated. The diagnostic odds ratio (DOR) was 14.12 (95% CI 11.17 to 17.84). The estimated sensitivity, at a fixed median specificity of 0.78, was 0.70 (95% CI 0.64 to 0.75). In a hypothetical cohort of 1000 tooth sites or surfaces, with a prevalence of enamel caries of 57%, obtained from the included studies, the estimated sensitivity of 0.70 and specificity of 0.78 would result in 171 missed tooth sites or surfaces with enamel caries (false negatives) and 95 incorrectly classed as having early caries (false positives). We used meta-regression to compare the accuracy of the different devices for red fluorescence (84 datasets, 14,514 tooth sites), blue fluorescence (21 datasets, 3429 tooth sites), and green fluorescence (9 datasets, 3340 tooth sites) devices. Initially, we allowed threshold, shape, and accuracy to vary according to device type by including covariates in the model. Allowing consistency of shape, removal of the covariates for accuracy had only a negligible effect (Chi2 = 3.91, degrees of freedom (df) = 2, P = 0.14). Despite the relatively large volume of evidence we rated the certainty of the evidence as low, downgraded two levels in total, for risk of bias due to limitations in the design and conduct of the included studies, indirectness arising from the high number of in vitro studies, and inconsistency due to the substantial variability of results. AUTHORS' CONCLUSIONS: There is considerable variation in the performance of these fluorescence-based devices that could not be explained by the different wavelengths of the devices assessed, participant, or study characteristics. Blue and green fluorescence-based devices appeared to outperform red fluorescence-based devices but this difference was not supported by the results of a formal statistical comparison. The evidence base was considerable, but we were only able to include 79 studies out of 133 in the meta-analysis as estimates of sensitivity or specificity values or both could not be extracted or derived. In terms of applicability, any future studies should be carried out in a clinical setting, where difficulties of caries assessment within the oral cavity include plaque, staining, and restorations. Other considerations include the potential of fluorescence devices to be used in combination with other technologies and comparative diagnostic accuracy studies.


ANTECEDENTES: La caries es una de las afecciones más frecuentes y prevenibles en todo el mundo. Si se identifican con suficiente antelación, se pueden aplicar técnicas no invasivas y, por lo tanto, esta revisión se centra en las caries tempranas que afectan la superficie del esmalte del diente. La piedra angular de la detección de la caries es una exploración dental visual y táctil; sin embargo, existen métodos alternativos de detección, entre los que se incluyen los dispositivos basados en la fluorescencia. Hay tres categorías de dispositivos basados en la fluorescencia, cada una de ellas definida principalmente por las diferentes longitudes de onda que utilizan; estos grupos se han llamado fluorescencia roja, azul y verde. Estos dispositivos podrían apoyar la exploración visual para la detección y el diagnóstico de la caries en una etapa temprana de descomposición. OBJETIVOS: Los objetivos principales fueron determinar la exactitud de la prueba diagnóstica de dispositivos basados en la fluorescencia para la detección y el diagnóstico de la caries del esmalte en niños o adultos. Se planificó investigar las siguientes fuentes potenciales de heterogeneidad: superficie dental (oclusal, proximal, superficie lisa o adyacente a una restauración); dispositivos de medición de punto único frente a dispositivos de imagen o de evaluación de superficie; y la prevalencia de enfermedades más graves en cada muestra de estudio, a nivel de caries en la dentina. MÉTODOS DE BÚSQUEDA: El documentalista del Grupo Cochrane de Salud Oral (Cochrane Oral Health Group) realizó una búsqueda en las siguientes bases de datos: MEDLINE Ovid (1946 al 30 de mayo de 2019); Embase Ovid (1980 al 30 de mayo de 2019); Registro de ensayos en curso de los Institutos Nacionales de Salud de los Estados Unidos (ClinicalTrials.gov, hasta el 30 de mayo de 2019); y la Plataforma de Registro Internacional de Ensayos Clínicos de la Organización Mundial de la Salud (hasta el 30 de mayo de 2019). Se estudiaron las listas de referencias y las revisiones sistemáticas publicadas. CRITERIOS DE SELECCIÓN: Se incluyeron diseños de estudios de exactitud diagnóstica que compararon un dispositivo basado en la fluorescencia con un estándar de referencia. Esto incluyó estudios prospectivos que evaluaron la exactitud diagnóstica de una única prueba índice y estudios que compararon directamente dos o más pruebas índice. Se excluyeron los estudios que reclutaron explícitamente a participantes con caries en la dentina o en la cavitación franca. OBTENCIÓN Y ANÁLISIS DE LOS DATOS: Dos autores de la revisión extrajeron los datos de forma independiente mediante un formulario de extracción de datos de estudios piloto basado en la Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS­2). De cada estudio se informaron la sensibilidad y la especificidad con intervalos de confianza (IC) del 95%. Esta información se ha presentado en forma de diagramas de bosque (forest plot) emparejados y gráficos de curva resumen de rendimiento diagnóstico (SROC), que muestran los puntos de sensibilidad­especificidad de cada estudio. La exactitud diagnóstica se calculó mediante métodos de modelo jerárquico de curva resumen de rendimiento diagnóstico (HSROC). Se informaron sensibilidades a valores fijos de especificidad (mediana 0,78, cuartil superior 0,90). RESULTADOS PRINCIPALES: Se incluyeron un total de 133 estudios, 55 no informaron los datos en el formato 2 x 2 y no se pudieron incluir en el metanálisis. En el metanálisis se incluyeron 79 estudios que proporcionaron 114 conjuntos de datos y evaluaron 21 283 superficies dentales. Hubo alto riesgo de sesgo en el dominio de selección de los participantes. La prueba índice, el estándar de referencia y los dominios de flujo y tiempo mostraron que una alta proporción de los estudios tenían un bajo riesgo de sesgo. Las preocupaciones relacionadas con la aplicabilidad de la evidencia fueron altas o poco claras en todos los dominios, y la mayor proporción se observó en la selección de los participantes. El reclutamiento selectivo de los participantes, los umbrales diagnósticos mal definidos y el hecho de que los estudios in vitro no se puedan generalizar al escenario clínico de una exploración dental de rutina fueron las principales razones de estos hallazgos. El predominio de los estudios in vitro también hizo que la información sobre la forma en que se utilizan los resultados de esos dispositivos para apoyar el diagnóstico, en contraposición con la detección pura, fuera muy limitada. Hubo una variabilidad significativa en los resultados que no se pudo explicar por los diferentes dispositivos o dentición u otras fuentes de heterogeneidad que se investigaron. El odds ratio diagnóstico (ORD) fue 14,12 (IC del 95%: 11,17 a 17,84). La sensibilidad estimada, con una especificidad media fija de 0,78, fue 0,70 (IC del 95%: 0,64 a 0,75). En una cohorte hipotética de 1000 puntos o superficies dentales, con una prevalencia de caries del esmalte del 57%, obtenida de los estudios incluidos, la sensibilidad estimada de 0,70 y la especificidad de 0,78 daría lugar a 171 puntos o superficies dentales con caries del esmalte no detectados (falsos negativos) y 95 incorrectamente considerados con caries temprana (falsos positivos). Se utilizó la metarregresión para comparar la exactitud de los diferentes dispositivos para la fluorescencia roja (84 conjuntos de datos, 14 514 puntos dentales), la fluorescencia azul (21 conjuntos de datos, 3429 puntos dentales), y la fluorescencia verde (nueve conjuntos de datos, 3340 puntos dentales). Inicialmente, se permitió que el umbral, la forma y la exactitud variaran según el tipo de dispositivo, incluyendo covariables en el modelo. Permitiendo la homogeneidad de la forma, la eliminación de las covariables para la exactitud tuvo sólo un efecto insignificante (Ji2 = 3,91; grados de libertad [gl] = 2; p = 0,14). A pesar del volumen relativamente grande de evidencia, la certeza de las mismas se consideró baja, disminuyendo dos niveles en total, por el riesgo de sesgo debido a las limitaciones en el diseño y la realización de los estudios incluidos, los hallazgos indirectos derivados del elevado número de estudios in vitro y la incoherencia debida a la considerable variabilidad de los resultados. CONCLUSIONES DE LOS AUTORES: Existe una considerable variación en la ejecución de estos dispositivos basados en la fluorescencia que no se pudo explicar por las diferentes longitudes de onda de los dispositivos evaluados, los participantes ni las características de los estudios. Los dispositivos basados en la fluorescencia azul y verde parecieron superar a los basados en la fluorescencia roja, pero esta diferencia no estuvo respaldada por los resultados de una comparación estadística formal. La base de evidencia fue considerable, pero sólo fue posible incluir 79 estudios de 133 en el metanálisis, ya que no se pudieron extraer o derivar las estimaciones de los valores de sensibilidad o especificidad o ambos. En cuanto a la aplicabilidad, todo estudio futuro se debería realizar en un ámbito clínico, en el que las dificultades de la evaluación de la caries dentro de la cavidad oral incluyen la placa, la tinción y las restauraciones. Otras consideraciones son el potencial de los dispositivos de fluorescencia para ser utilizados en combinación con otras tecnologías y estudios comparativos de exactitud diagnóstica.


Assuntos
Cárie Dentária/diagnóstico , Fluorescência Quantitativa Induzida por Luz/instrumentação , Adulto , Viés , Criança , Cor , Fluorescência , Humanos , Seleção de Pacientes , Estudos Prospectivos , Sensibilidade e Especificidade
17.
Cochrane Database Syst Rev ; 12: CD013806, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33284484

RESUMO

BACKGROUND: Root caries is a well-recognised disease, with increasing prevalence as populations age and retain more of their natural teeth into later life. Like coronal caries, root caries can be associated with pain, discomfort, tooth loss, and contribute significantly to poorer oral health-related quality of life in the elderly. Supplementing the visual-tactile examination could prove beneficial in improving the accuracy of early detection and diagnosis. The detection of root caries lesions at an early stage in the disease continuum can inform diagnosis and lead to targeted preventive therapies and lesion arrest. OBJECTIVES: To assess the diagnostic test accuracy of index tests for the detection and diagnosis of root caries in adults, used alone or in combination with other tests. SEARCH METHODS: Cochrane Oral Health's Information Specialist undertook a search of the following databases: MEDLINE Ovid (1946 to 31 December 2018); Embase Ovid (1980 to 31 December 2018); US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov, to 31 December 2018); and the World Health Organization International Clinical Trials Registry Platform (to 31 December 2018). We studied reference lists as well as published systematic review articles. SELECTION CRITERIA: We included diagnostic accuracy study designs that compared one or more index tests (laser fluorescence, radiographs, visual examination, electronic caries monitor (ECM), transillumination), either independently or in combination, with a reference standard. This included prospective studies that evaluated the diagnostic accuracy of single index tests and studies that directly compared two or more index tests. In vitro and in vivo studies were eligible for inclusion but studies that artificially created carious lesions were excluded. DATA COLLECTION AND ANALYSIS: Two review authors extracted data independently and in duplicate using a standardised data extraction and quality assessment form based on the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) specific to the review context. Estimates of diagnostic test accuracy were expressed as sensitivity and specificity with 95% confidence intervals (CI) for each dataset. We planned to use hierarchical models for data synthesis and explore potential sources of heterogeneity through meta-regression. MAIN RESULTS: Four cross-sectional diagnostic test accuracy studies providing eight datasets with data from 4997 root surfaces were analysed. Two in vitro studies evaluated secondary root caries lesions on extracted teeth and two in vivo studies evaluated primary root caries lesions within the oral cavity. Four studies evaluated laser fluorescence and reported estimates of sensitivity ranging from 0.50 to 0.81 and specificity ranging from 0.40 to 0.80. Two studies evaluated radiographs and reported estimates of sensitivity ranging from 0.40 to 0.63 and specificity ranging from 0.31 to 0.80. One study evaluated visual examination and reported sensitivity of 0.75 (95% CI 0.48 to 0.93) and specificity of 0.38 (95% CI 0.14 to 0.68). One study evaluated the accuracy of radiograph and visual examination in combination and reported sensitivity of 0.81 (95% CI 0.54 to 0.96) and specificity of 0.54 (95% CI 0.25 to 0.81). Given the small number of studies and important differences in the clinical and methodological characteristics of the studies we were unable to pool the results. Consequently, we were unable to formally evaluate the comparative accuracy of the different tests considered in this review. Using QUADAS-2 we judged all four studies to be at overall high risk of bias, but only two to have applicability concerns (patient selection domain). Reasons included bias in the selection process, use of post hoc (data driven) positivity thresholds, use of an imperfect reference standard, and use of extracted teeth. We downgraded the certainty of the evidence due to study limitations and serious imprecision of the results (downgraded two levels), and judged the certainty of the evidence to be very low. AUTHORS' CONCLUSIONS: Visual-tactile examination is the mainstay of root caries detection and diagnosis; however, due to the paucity of the evidence base and the very low certainty of the evidence we were unable to determine the additional benefit of adjunctive diagnostic tests for the detection and diagnosis of root caries.


Assuntos
Cárie Radicular/diagnóstico , Idoso , Estudos Transversais , Diagnóstico Precoce , Fluorescência , Humanos , Lasers , Pessoa de Meia-Idade , Exame Físico/métodos , Radiografia Dentária , Padrões de Referência , Sensibilidade e Especificidade , Transiluminação/métodos
18.
Cochrane Database Syst Rev ; 10: CD004346, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33053198

RESUMO

BACKGROUND: There is ongoing debate about the frequency with which patients should attend for a dental check-up and the effects on oral health of the interval between check-ups. Recommendations regarding optimal recall intervals vary between countries and dental healthcare systems, but 6-month dental check-ups have traditionally been advocated by general dental practitioners in many high-income countries. This review updates a version first published in 2005, and updated in 2007 and 2013. OBJECTIVES: To determine the optimal recall interval of dental check-up for oral health in a primary care setting. SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 17 January 2020), the Cochrane Central Register of Controlled Trials (CENTRAL; in the Cochrane Library, 2019, Issue 12), MEDLINE Ovid (1946 to 17 January 2020), and Embase Ovid (1980 to 17 January 2020). We also searched the US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform for ongoing trials. We placed no restrictions on the language or date of publication when searching. SELECTION CRITERIA: We included randomised controlled trials (RCTs) assessing the effects of different dental recall intervals in a primary care setting. DATA COLLECTION AND ANALYSIS: Two review authors screened search results against inclusion criteria, extracted data and assessed risk of bias, independently and in duplicate. We contacted study authors for clarification or further information where necessary and feasible. We expressed the estimate of effect as mean difference (MD) with 95% confidence intervals (CIs) for continuous outcomes and risk ratios (RR) with 95% CIs for dichotomous outcomes. We assessed the certainty of the evidence using GRADE. MAIN RESULTS: We included two studies with data from 1736 participants. One study was conducted in a public dental service clinic in Norway and involved participants under 20 years of age who were regular attenders at dental appointments. It compared 12-month with 24-month recall intervals and measured outcomes at two years. The other study was conducted in UK general dental practices and involved adults who were regular attenders, which was defined as having attended the dentist at least once in the previous two years. It compared the effects of 6-month, 24-month and risk-based recall intervals, and measured outcomes at four years. The main outcomes we considered were dental caries, gingival bleeding and oral-health-related quality of life. Neither study measured other potential adverse effects. 24-month versus 12-month recall at 2 years' follow-up Due to the very low certainty of evidence from one trial, it is unclear if there is an important difference in caries experience between assignment to a 24-month or a 12-month recall. For 3- to 5-year-olds with primary teeth, the mean difference (MD) in dmfs (decayed, missing, and filled tooth surfaces) increment was 0.90 (95% CI -0.16 to 1.96; 58 participants). For 16- to 20-year-olds with permanent teeth, the MD in DMFS increment was 0.86 (95% CI -0.03 to 1.75; 127 participants). The trial did not assess other clinical outcomes of relevance to this review. Risk-based recall versus 6-month recall at 4 years' follow-up We found high-certainty evidence from one trial of adults that there is little to no difference between risk-based and 6-month recall intervals for the outcomes: number of tooth surfaces with any caries (ICDAS 1 to 6; MD 0.15, 95% CI -0.77 to 1.08; 1478 participants); proportion of sites with gingival bleeding (MD 0.78%, 95% CI -1.17% to 2.73%; 1472 participants); oral-health-related quality of life (MD in OHIP-14 scores -0.35, 95% CI -1.02 to 0.32; 1551 participants). There is probably little to no difference in the prevalence of moderate to extensive caries (ICDAS 3 to 6) between the groups (RR 1.04, 95% CI 0.99 to 1.09; 1478 participants; moderate-certainty evidence). 24-month recall versus 6-month recall at 4 years' follow-up We found moderate-certainty evidence from one trial of adults that there is probably little to no difference between 24-month and 6-month recall intervals for the outcomes: number of tooth surfaces with any caries (MD -0.60, 95% CI -2.54 to 1.34; 271 participants); percentage of sites with gingival bleeding (MD -0.91%, 95% CI -5.02% to 3.20%; 271 participants). There may be little to no difference between the groups in the prevalence of moderate to extensive caries (RR 1.05, 95% CI 0.92 to 1.20; 271 participants; low-certainty evidence). We found high-certainty evidence that there is little to no difference in oral-health-related quality of life between the groups (MD in OHIP-14 scores -0.24, 95% CI -1.55 to 1.07; 305 participants). Risk-based recall versus 24-month recall at 4 years' follow-up We found moderate-certainty evidence from one trial of adults that there is probably little to no difference between risk-based and 24-month recall intervals for the outcomes: prevalence of moderate to extensive caries (RR 1.06, 95% CI 0.95 to 1.19; 279 participants); number of tooth surfaces with any caries (MD 1.40, 95% CI -0.69 to 3.49; 279 participants). We found high-certainty evidence that there is no important difference between the groups in the percentage of sites with gingival bleeding (MD -0.07%, 95% CI -4.10% to 3.96%; 279 participants); or in oral-health-related quality of life (MD in OHIP-14 scores -0.37, 95% CI -1.69 to 0.95; 298 participants). AUTHORS' CONCLUSIONS: For adults attending dental check-ups in primary care settings, there is little to no difference between risk-based and 6-month recall intervals in the number of tooth surfaces with any caries, gingival bleeding and oral-health-related quality of life over a 4-year period (high-certainty evidence). There is probably little to no difference between the recall strategies in the prevalence of moderate to extensive caries (moderate-certainty evidence). When comparing 24-month with either 6-month or risk-based recall intervals for adults, there is moderate- to high-certainty evidence that there is little to no difference in the number of tooth surfaces with any caries, gingival bleeding and oral-health-related quality of life over a 4-year period. The available evidence on recall intervals between dental check-ups for children and adolescents is uncertain. The two trials we included in the review did not assess adverse effects of different recall strategies.


Assuntos
Agendamento de Consultas , Assistência Odontológica/normas , Saúde Bucal , Adolescente , Adulto , Fatores Etários , Pré-Escolar , Cárie Dentária/epidemiologia , Dentição Permanente , Hemorragia Gengival/epidemiologia , Humanos , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Retenção nos Cuidados , Fatores de Tempo , Dente Decíduo , Adulto Jovem
19.
Cochrane Database Syst Rev ; 9: CD013627, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32936948

RESUMO

BACKGROUND: COVID-19 infection poses a serious risk to patients and - due to its contagious nature - to those healthcare workers (HCWs) treating them. If the mouth and nose of patients with infection are irrigated with antimicrobial solutions, this may help the patients by killing any coronavirus present at those sites. It may also reduce the risk of the active infection being passed to HCWs through droplet transmission or direct contact. However, the use of such antimicrobial solutions may be associated with harms related to the toxicity of the solutions themselves or alterations in the natural microbial flora of the mouth or nose. OBJECTIVES: To assess the benefits and harms of antimicrobial mouthwashes and nasal sprays administered to patients with suspected or confirmed COVID-19 infection to both the patients and the HCWs caring for them. SEARCH METHODS: Information Specialists from Cochrane ENT and Cochrane Oral Health searched the Central Register of Controlled Trials (CENTRAL 2020, Issue 6); Ovid MEDLINE; Ovid Embase and additional sources for published and unpublished trials. The date of the search was 1 June 2020.  SELECTION CRITERIA: This is a question that urgently requires evidence, however at the present time we did not anticipate finding many completed RCTs. We therefore planned to include the following types of studies: randomised controlled trials (RCTs); quasi-RCTs; non-randomised controlled trials; prospective cohort studies; retrospective cohort studies; cross-sectional studies; controlled before-and-after studies. We set no minimum duration for the studies.   We sought studies comparing antimicrobial mouthwash and/or nasal spray (alone or in combination) at any concentration, delivered with any frequency or dosage to suspected/confirmed COVID-19 patients. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. Our primary outcomes were: 1) RECOVERY* (www.recoverytrial.net) outcomes in patients (mortality; hospitalisation status; use of ventilation; use of renal dialysis or haemofiltration); 2) incidence of symptomatic or test-positive COVID-19 infection in HCWs; 3) significant adverse event: anosmia (or disturbance in sense of smell). Our secondary outcomes were: 4) change in COVID-19 viral load in patients; 5) COVID-19 viral content of aerosol (when present); 6) other adverse events: changes in microbiome in oral cavity, nasal cavity, oro- or nasopharynx; 7) other adverse events: allergy, irritation/burning of nasal, oral or oropharyngeal mucosa (e.g. erosions, ulcers, bleeding), long-term staining of mucous membranes or teeth, accidental ingestion. We planned to use GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS: We found no completed studies to include in this review. We identified 16 ongoing studies (including 14 RCTs), which aim to enrol nearly 1250 participants. The interventions included in these trials are ArtemiC (artemisinin, curcumin, frankincense and vitamin C), Citrox (a bioflavonoid), cetylpyridinium chloride, chlorhexidine, chlorine dioxide, essential oils, hydrogen peroxide, hypertonic saline, Kerecis spray (omega 3 viruxide - containing neem oil and St John's wort), neem extract, nitric oxide releasing solution, povidone iodine and saline with baby shampoo.  AUTHORS' CONCLUSIONS: We identified no studies for inclusion in this review. This is not surprising given the relatively recent emergence of COVID-19 infection. It is promising that the question posed in this review is being addressed by a number of RCTs and other studies. We are concerned that few of the ongoing studies specifically state that they will evaluate adverse events such as changes in the sense of smell or to the oral and nasal microbiota, and any consequences thereof. Very few interventions have large and dramatic effect sizes. If a positive treatment effect is demonstrated when studies are available for inclusion in this review, it may not be large. In these circumstances in particular it may be a challenge to weigh up the benefits against the harms if the latter are of uncertain frequency and severity.


Assuntos
Anti-Infecciosos/administração & dosagem , Betacoronavirus , Infecções por Coronavirus/terapia , Pessoal de Saúde , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Antissépticos Bucais/administração & dosagem , Sprays Nasais , Pneumonia Viral/terapia , Anti-Infecciosos/efeitos adversos , COVID-19 , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Humanos , Boca/virologia , Antissépticos Bucais/efeitos adversos , Nariz/virologia , Doenças Profissionais/etiologia , Doenças Profissionais/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , SARS-CoV-2 , Irrigação Terapêutica
20.
Cochrane Database Syst Rev ; 9: CD013628, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32936947

RESUMO

BACKGROUND: COVID-19 infection poses a serious risk to patients and - due to its contagious nature - to those healthcare workers (HCWs) treating them. The risks of transmission of infection are greater when a patient is undergoing an aerosol-generating procedure (AGP). Not all those with COVID-19 infection are symptomatic, or suspected of harbouring the infection. If a patient who is not known to have or suspected of having COVID-19 infection is to undergo an AGP, it would nonetheless be sensible to minimise the risk to those HCWs treating them. If the mouth and nose of an individual undergoing an AGP are irrigated with antimicrobial solutions, this may be a simple and safe method of reducing the risk of any covert infection being passed to HCWs through droplet transmission or direct contact. Alternatively, the use of antimicrobial solutions by the HCW may decrease the chance of them acquiring COVID-19 infection. However, the use of such antimicrobial solutions may be associated with harms related to the toxicity of the solutions themselves or alterations in the natural microbial flora of the mouth or nose. OBJECTIVES: To assess the benefits and harms of antimicrobial mouthwashes and nasal sprays administered to HCWs and/or patients when undertaking AGPs on patients without suspected or confirmed COVID-19 infection. SEARCH METHODS: Information Specialists from Cochrane ENT and Cochrane Oral Health searched the Central Register of Controlled Trials (CENTRAL 2020, Issue 6); Ovid MEDLINE; Ovid Embase and additional sources for published and unpublished trials. The date of the search was 1 June 2020.  SELECTION CRITERIA: This is a question that urgently requires evidence, however at the present time we did not anticipate finding many completed RCTs. We therefore planned to include the following types of studies: randomised controlled trials (RCTs); quasi-RCTs; non-randomised controlled trials; prospective cohort studies; retrospective cohort studies; cross-sectional studies; controlled before-and-after studies. We set no minimum duration for the studies.   We sought studies comparing any antimicrobial mouthwash and/or nasal spray (alone or in combination) at any concentration, delivered to the patient or HCW before and/or after an AGP. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. Our primary outcomes were: 1) incidence of symptomatic or test-positive COVID-19 infection in HCWs or patients; 2) significant adverse event: anosmia (or disturbance in sense of smell). Our secondary outcomes were: 3) COVID-19 viral content of aerosol (when present); 4) change in COVID-19 viral load at site(s) of irrigation; 5) other adverse events: changes in microbiome in oral cavity, nasal cavity, oro- or nasopharynx; 6) other adverse events: allergy, irritation/burning of nasal, oral or oropharyngeal mucosa (e.g. erosions, ulcers, bleeding), long-term staining of mucous membranes or teeth, accidental ingestion. We planned to use GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS: We found no completed studies to include in this review.   AUTHORS' CONCLUSIONS: We identified no studies for inclusion in this review, nor any ongoing studies. The absence of completed studies is not surprising given the relatively recent emergence of COVID-19 infection. However, we are disappointed that this important clinical question is not being addressed by ongoing studies.


Assuntos
Anti-Infecciosos/administração & dosagem , Betacoronavirus , Infecções por Coronavirus/transmissão , Pessoal de Saúde , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Antissépticos Bucais/administração & dosagem , Sprays Nasais , Pneumonia Viral/transmissão , Administração Intranasal , Microbiologia do Ar , Anti-Infecciosos/efeitos adversos , Infecções Assintomáticas/terapia , COVID-19 , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Humanos , Boca/virologia , Antissépticos Bucais/efeitos adversos , Nariz/virologia , Doenças Profissionais/etiologia , Doenças Profissionais/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/terapia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA