Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113866, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416638

RESUMO

To mount an adaptive immune response, dendritic cells must migrate to lymph nodes to present antigens to T cells. Critical to 3D migration is the nucleus, which is the size-limiting barrier for migration through the extracellular matrix. Here, we show that inflammatory activation of dendritic cells leads to the nucleus becoming spherically deformed and enables dendritic cells to overcome the typical 2- to 3-µm diameter limit for 3D migration through gaps in the extracellular matrix. We show that the nuclear shape change is partially attained through reduced cell adhesion, whereas improved 3D migration is achieved through reprogramming of the actin cytoskeleton. Specifically, our data point to a model whereby the phosphorylation of cofilin-1 at serine 41 drives the assembly of a cofilin-actomyosin ring proximal to the nucleus and enhances migration through 3D collagen gels. In summary, these data describe signaling events through which dendritic cells deform their nucleus and enhance their migratory capacity.


Assuntos
Fatores de Despolimerização de Actina , Actomiosina , Fatores de Despolimerização de Actina/metabolismo , Movimento Celular/fisiologia , Actomiosina/metabolismo , Citocinese , Cofilina 1/metabolismo , Matriz Extracelular/metabolismo , Células Dendríticas/metabolismo
2.
Biomedicines ; 11(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38002039

RESUMO

Podocytes play a central role in glomerular diseases such as (idiopathic) nephrotic syndrome (iNS). Glucocorticoids are the gold standard therapy for iNS. Nevertheless, frequent relapses are common. In children with iNS, steroid-sparing agents are used to avoid prolonged steroid use and reduce steroid toxicity. Levamisole is one of these steroid-sparing drugs and although clinical effectiveness has been demonstrated, the molecular mechanisms of how levamisole exerts its beneficial effects remains poorly studied. Apart from immunomodulatory capacities, nonimmunological effects of levamisole on podocytes have also been suggested. We aimed to elaborate on the effects of levamisole on human podocytes in iNS. RNA sequencing data from a human podocyte cell line treated with levamisole showed that levamisole modulates the expression of various genes involved in actin cytoskeleton stabilization and remodeling. Functional experiments showed that podocytes exposed to puromycin aminonucleoside (PAN), lipopolysaccharides (LPS), and NS patient plasma resulted in significant actin cytoskeleton derangement, reduced cell motility, and impaired cellular adhesion when compared to controls, effects that could be restored by levamisole. Mechanistic studies revealed that levamisole exerts its beneficial effects on podocytes by signaling through the glucocorticoid receptor and by regulating the activity of Rho GTPases. In summary, our data show that levamisole exerts beneficial effects on podocytes by stabilizing the actin cytoskeleton in a glucocorticoid receptor-dependent manner.

3.
Cell Mol Life Sci ; 80(10): 306, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37755527

RESUMO

Intracellular vesicle transport is essential for cellular homeostasis and is partially mediated by SNARE proteins. Endosomal trafficking to the plasma membrane ensures cytokine secretion in dendritic cells (DCs) and the initiation of immune responses. Despite its critical importance, the specific molecular components that regulate DC cytokine secretion are poorly characterised. Galectin-9, a ß-galactoside-binding protein, has emerged as a novel cellular modulator although its exact intracellular roles in regulating (immune) cell homeostasis and vesicle transport are virtually unknown. We investigated galectin-9 function in primary human DCs and report that galectin-9 is essential for intracellular cytokine trafficking to the cell surface. Galectin-9-depleted DCs accumulate cytokine-containing vesicles in the Golgi complex that eventually undergo lysosomal degradation. We observed galectin-9 to molecularly interact with Vamp-3 using immunoprecipitation-mass-spectrometry and identified galectin-9 was required for rerouting Vamp-3-containing endosomes upon DC activation as the underlying mechanism. Overall, this study identifies galectin-9 as a necessary mechanistic component for intracellular trafficking. This may impact our general understanding of vesicle transport and sheds new light into the multiple roles galectins play in governing cell function.

4.
Kidney Int Rep ; 7(12): 2691-2703, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36506233

RESUMO

Introduction: The recurrence of proteinuria after kidney transplantation in patients with focal segmental glomerulosclerosis (FSGS) is considered proof of the presence of circulating permeability factors (CPFs). The aim of this study is to demonstrate the presence of plasma CPFs using series of in vitro assays. Methods: Podocytes and endothelial cells (glomerular microvascular endothelial cells [GMVECs]) were incubated with plasma from FSGS patients with presumed CPFs in relapse and remission and from steroid-resistant nephrotic syndrome (SRNS), steroid-sensitive nephrotic syndrome (SSNS), membranous nephropathy (MN), and healthy controls (hCtrls). Cell viability, podocyte actin cytoskeleton architecture, and reactive oxygen species (ROS) formation with or without ROS scavenger were investigated by Cell Counting Kit-8 assay, immunofluorescence staining, and CM-H2DCFDA probing, respectively. Results: Presumed CPF-containing plasma causes a series of events in podocytes but not in GMVECs. These events include actin cytoskeleton rearrangement and excessive formation of ROS, which results in podocyte loss. These effects were solely observed in response to CPF plasma collected during relapse, but not in response to plasma of hCtrls, or patients with SRNS, SSNS, and MN. The copresence of dimethylthiourea, a scavenger of ROS, abolished the aforementioned effects of CPF plasma. Conclusion: We provide a panel of in vitro bioassays to measure podocyte injury and predict the presence of CPFs in plasma of patients with nephrotic syndrome (NS), providing a new framework for monitoring CPF activity that may contribute to future NS diagnostics or used for disease monitoring purposes. Moreover, our findings suggest that the inhibition of ROS formation or facilitating rapid ROS scavenging may exert beneficial effects in patients with CPFs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA