Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Vaccines (Basel) ; 9(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34358144

RESUMO

Reversible electropermeabilization (RE) is an ultrastructural phenomenon that transiently increases the permeability of the cell membrane upon application of electrical pulses. The technique was described in 1972 by Neumann and Rosenheck and is currently used in a variety of applications, from medicine to food processing. In oncology, RE is applied for the intracellular transport of chemotherapeutic drugs as well as the delivery of genetic material in gene therapies and vaccinations. This review summarizes the physical changes of the membrane, the particularities of bleomycin, and the immunological aspects involved in electrochemotherapy and gene electrotransfer, two important EP-based cancer therapies in human and veterinary oncology.

2.
Front Immunol ; 11: 576658, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193370

RESUMO

Immune evasion is an important cancer hallmark and the understanding of its mechanisms has generated successful therapeutic approaches. Induction of immunogenic cell death (ICD) is expected to attract immune cell populations that promote innate and adaptive immune responses. Here, we present a critical advance for our adenovirus-mediated gene therapy approach, where the combined p14ARF and human interferon-ß (IFNß) gene transfer to human melanoma cells led to oncolysis, ICD and subsequent activation of immune cells. Our results indicate that IFNß alone or in combination with p14ARF was able to induce massive cell death in the human melanoma cell line SK-MEL-147, though caspase 3/7 activation was not essential. In situ gene therapy of s.c. SK-MEL-147 tumors in Nod-Scid mice revealed inhibition of tumor growth and increased survival in response to IFNß alone or in combination with p14ARF. Emission of critical markers of ICD (exposition of calreticulin, secretion of ATP and IFNß) was stronger when cells were treated with combined p14ARF and IFNß gene transfer. Co-culture of previously transduced SK-MEL-147 cells with monocyte-derived dendritic cells (Mo-DCs) derived from healthy donors resulted in increased levels of activation markers HLA-DR, CD80, and CD86. Activated Mo-DCs were able to prime autologous and allogeneic T cells, resulting in increased secretion of IFNγ, TNF-α, and IL-10. Preliminary data showed that T cells primed by Mo-DCs activated with p14ARF+IFNß-transduced SK-MEL-147 cells were able to induce the loss of viability of fresh non-transduced SK-MEL-147 cells, suggesting the induction of a specific cytotoxic population that recognized and killed SK-MEL-147 cells. Collectively, our results indicate that p14ARF and IFNß delivered by our adenoviral system induced oncolysis in human melanoma cells accompanied by adaptive immune response activation and regulation.


Assuntos
Adenoviridae/fisiologia , Imunoterapia/métodos , Interferon beta/genética , Melanoma/terapia , Linfócitos T/imunologia , Proteína Supressora de Tumor p14ARF/genética , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Terapia Genética , Humanos , Ativação Linfocitária , Melanoma/genética , Camundongos , Camundongos SCID , Terapia Viral Oncolítica , Carga Tumoral , Evasão Tumoral
3.
Front Oncol ; 9: 685, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616626

RESUMO

Breast cancer (BC) remains the leading cause of cancer-related deaths among women, and the chances to develop it are duplicated by obesity. Still, the impact of obesity during BC progression remains less understood. We investigated the role of obesity in tumor progression using the murine model of 4T1 mammary carcinoma in BALB/c female mice, previously high-fat-diet (HFD) fed. HFD induced obesity, metabolic impairment, and high serum and fat leptin levels. After injection of 4T1-cells, HFD-mice accelerated tumor progression and metastasis. 4T1-cells found within HFD-mice metastatic niches presented higher clonogenic potential. 4T1-cells treated in vitro with fat-conditioned medium derived from HFD-mice, increased migration capacity through CXCL12 and CCL25 gradients. In HFD-mice, the infiltration and activation of immune cells into tumor-sentinel lymph nodes was overall reduced, except for activated CD4+ T cells expressing low CD25 levels. Within the bone marrow, the levels of haematopoiesis-related IL-6 and TNF-α decreased after 4T1-cells injection in HFD-mice whereas increased in the controls, suggesting that upregulation of both cytokines, regardless of the tumor, is disrupted by obesity. Finally, the expression of genes for leptin, CXCR4, and CCR9 (receptors of CXCL12 and CCL25, respectively) was negatively correlated with the infiltration of CD8 T cells in human triple-negative BC tumors from obese patients compared to non-obese. Together, our data present early evidence of systemic networks triggered by obesity that promote BC progression to the metastatic niches. Targeting these pathways might be useful to prevent the rapid BC progression observed among obese patients.

4.
Sci Rep ; 7(1): 9002, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827632

RESUMO

Cervical cancer is the last stage of a series of molecular and cellular alterations initiated with Human Papillomavirus (HPV) infection. The process involves immune responses and evasion mechanisms, which culminates with tolerance toward tumor antigens. Our objective was to understand local and systemic changes in the interactions between HPV associated cervical lesions and the immune system as lesions progress to cancer. Locally, we observed higher cervical leukocyte infiltrate, reflected by the increase in the frequency of T lymphocytes, neutrophils and M2 macrophages, in cancer patients. We observed a strong negative correlation between the frequency of neutrophils and T cells in precursor and cancer samples, but not cervicitis. In 3D tumor cell cultures, neutrophils inhibited T cell activity, displayed longer viability and longer CD16 expression half-life than neat neutrophil cultures. Systemically, we observed higher plasma G-CSF concentration, higher frequency of immature low density neutrophils, and tolerogenic monocyte derived dendritic cells, MoDCs, also in cancer patients. Interestingly, there was a negative correlation between T cell activation by MoDCs and G-CSF concentration in the plasma. Our results indicate that neutrophils and G-CSF may be part of the immune escape mechanisms triggered by cervical cancer cells, locally and systemically, respectively.


Assuntos
Fator Estimulador de Colônias de Granulócitos/sangue , Evasão da Resposta Imune , Neutrófilos/imunologia , Papillomaviridae/imunologia , Infecções por Papillomavirus/patologia , Neoplasias do Colo do Útero/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Dendríticas/imunologia , Feminino , Humanos , Macrófagos/imunologia , Pessoa de Meia-Idade , Infecções por Papillomavirus/complicações , Linfócitos T/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA