RESUMO
BACKGROUND: As the number of cancer survivors increases, maintaining health-related quality of life in cancer survivorship is a priority. This necessitates accurate and reliable methods to assess how cancer survivors are feeling and functioning. Real-world digital measures derived from wearable sensors offer potential for monitoring well-being and physical function in cancer survivorship, but questions surrounding the clinical utility of these measures remain to be answered. OBJECTIVE: In this secondary analysis, we used 2 existing data sets to examine how measures of real-world physical behavior, captured with a wearable accelerometer, were related to aerobic fitness and self-reported well-being and physical function in a sample of individuals who had completed cancer treatment. METHODS: Overall, 86 disease-free cancer survivors aged 21-85 years completed self-report assessments of well-being and physical function, as well as a submaximal exercise test that was used to estimate their aerobic fitness, quantified as predicted submaximal oxygen uptake (VO2). A thigh-worn accelerometer was used to monitor participants' real-world physical behavior for 7 days. Accelerometry data were used to calculate average values of the following measures of physical behavior: sedentary time, step counts, time in light and moderate to vigorous physical activity, time and weighted median cadence in stepping bouts over 1 minute, and peak 30-second cadence. RESULTS: Spearman correlation analyses indicated that 6 (86%) of the 7 accelerometry-derived measures of real-world physical behavior were not significantly correlated with Functional Assessment of Cancer Therapy-General total well-being or linked Patient-Reported Outcomes Measurement Information System-Physical Function scores (Ps≥.08). In contrast, all but one of the physical behavior measures were significantly correlated with submaximal VO2 (Ps≤.03). Comparing these associations using likelihood ratio tests, we found that step counts, time in stepping bouts over 1 minute, and time in moderate to vigorous activity were more strongly associated with submaximal VO2 than with self-reported well-being or physical function (Ps≤.03). In contrast, cadence in stepping bouts over 1 minute and peak 30-second cadence were not more associated with submaximal VO2 than with the self-reported measures (Ps≥.08). CONCLUSIONS: In a sample of disease-free cancer survivors, we found that several measures of real-world physical behavior were more associated with aerobic fitness than with self-reported well-being and physical function. These results highlight the possibility that in individuals who have completed cancer treatment, measures of real-world physical behavior may provide additional information compared with self-reported and performance measures. To advance the appropriate use of digital measures in oncology clinical research, further research evaluating the clinical utility of real-world physical behavior over time in large, representative samples of cancer survivors is warranted. TRIAL REGISTRATION: ClinicalTrials.gov NCT03781154; https://clinicaltrials.gov/ct2/show/NCT03781154.
RESUMO
Digital health technologies (DHTs) have the potential to modernize drug development and clinical trial operations by remotely, passively, and continuously collecting ecologically valid evidence that is meaningful to patients' lived experiences. Such evidence holds potential for all drug development stakeholders, including regulatory agencies, as it will help create a stronger evidentiary link between approval of new therapeutics and the ultimate aim of improving patient lives. However, only a very small number of novel digital measures have matured from exploratory usage into regulatory qualification or efficacy endpoints. This shows that despite the clear potential, actually gaining regulatory agreement that a new measure is both fit-for-purpose and delivers value remains a serious challenge. One of the key stumbling blocks for developers has been the requirement to demonstrate that a digital measure is meaningful to patients. This viewpoint aims to examine the co-evolution of regulatory guidance in the United States (U.S.) and best practice for integration of DHTs into the development of clinical outcome assessments. Contextualizing guidance on meaningfulness within the larger shift towards a patient-centric drug development approach, this paper reviews the U.S. Food and Drug Administration (FDA) guidance and existing literature surrounding the development of meaningful digital measures and patient engagement, including the recent examples of rejections by the FDA that further emphasize patient-centricity in digital measures. Finally, this paper highlights remaining hurdles and provides insights into the established frameworks for development and adoption of digital measures in clinical research.
RESUMO
PURPOSE: The burden of cancer cachexia on patients' health-related quality of life, specifically their physical functioning, is well documented, but clinical trials thus far have failed to show meaningful improvement in physical functioning. The purpose of this review is to summarize existing methods of assessing physical function in cancer cachexia, outline a path forward for measuring what is meaningful to patients using digital measures derived from digital health technologies (DHTs), and discuss the current landscape of digital measures from the clinical and regulatory standpoint. DESIGN: For this narrative review, peer-reviewed articles were searched on PubMed, clinical trials records were searched on clinicaltrials.gov, and records of digital measures submitted for regulatory qualification were searched on the US Food and Drug Administration's Drug Development Tool Qualification Program database. RESULTS: There are gaps in assessing aspects of physical function that matter to patients. Existing assessment methods such as patient-reported outcomes and objective performance outcomes have limitations, including their episodic nature and burden to patients. DHTs such as wearable sensors can capture real-world physical behavior continuously, passively, and remotely, and may provide a more comprehensive picture of patients' everyday functioning. Recent regulatory submissions showcase potential clinical implementation of digital measures in various therapeutic areas. CONCLUSION: Digital measures of real-world physical behavior present an opportunity to detect and demonstrate improvements in physical functioning in cancer cachexia, but evidence-based development is critical. For their use in clinical and regulatory decision making, studies demonstrating meaningfulness to patients as well as feasibility and validation are necessary.
Assuntos
Caquexia , Neoplasias , Humanos , Caquexia/diagnóstico , Caquexia/etiologia , Caquexia/terapia , Neoplasias/complicações , Neoplasias/terapia , Qualidade de Vida , Ensaios Clínicos como AssuntoRESUMO
Background: Depression imposes a major burden on public health as the leading cause of disability worldwide. Sleep disturbance is a core symptom of depression that affects the vast majority of patients. Nonetheless, it is frequently not resolved by depression treatment and may even be worsened through some pharmaceutical interventions. Disturbed sleep negatively impact patients' quality of life, and persistent sleep disturbance increases the risk of recurrence, relapse, and even suicide. However, the development of novel treatments that might improve sleep problems is hindered by the lack of reliable low-burden objective measures that can adequately assess disturbed sleep in this population. Summary: Developing improved digital measurement tools that are fit for use in clinical trials for major depressive disorder could promote the inclusion of sleep as a focus for treatment, clinical drug development, and research. This perspective piece explores the path toward the development of novel digital measures, reviews the existing evidence on the meaningfulness of sleep in depression, and summarizes existing methods of sleep assessments, including the use of digital health technologies. Key Messages: Our objective was to make a clear call to action and path forward for the qualification of new digital outcome measures which would enable assessment of sleep disturbance as an aspect of health that truly matters to patients, promoting sleep as an important outcome for clinical development, and ultimately ensure that disturbed sleep will not remain the forgotten symptom of depression.
RESUMO
Alzheimer's disease (AD) is a devastating neurodegenerative disease and the primary cause of dementia worldwide. Despite the magnitude of AD's impact on patients, caregivers, and society, nearly all AD clinical trials fail. A potential contributor to this high rate of failure is that established clinical outcome assessments fail to capture subtle clinical changes, entail high burden for patients and their caregivers, and ineffectively address the aspects of health deemed important by patients and their caregivers. AD progression is associated with widespread changes in physical behavior that have impacts on the ability to function independently, which is a meaningful aspect of health for patients with AD and important for diagnosis. However, established assessments of functional independence remain underutilized in AD clinical trials and are limited by subjective biases and ceiling effects. Digital measures of real-world physical behavior assessed passively, continuously, and remotely using digital health technologies have the potential to address some of these limitations and to capture aspects of functional independence in patients with AD. In particular, measures of real-world gait, physical activity, and life-space mobility captured with wearable sensors may offer value. Additional research is needed to understand the validity, feasibility, and acceptability of these measures in AD clinical research.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Cuidadores , Desenvolvimento de MedicamentosRESUMO
Background: Digital measures offer an unparalleled opportunity to create a more holistic picture of how people who are patients behave in their real-world environments, thereby establishing a better connection between patients, caregivers, and the clinical evidence used to drive drug development and disease management. Reaching this vision will require achieving a new level of co-creation between the stakeholders who design, develop, use, and make decisions using evidence from digital measures. Summary: In September 2022, the second in a series of meetings hosted by the Swiss Federal Institute of Technology in Zürich, the Foundation for the National Institutes of Health Biomarkers Consortium, and sponsored by Wellcome Trust, entitled "Reverse Engineering of Digital Measures," was held in Zurich, Switzerland, with a broad range of stakeholders sharing their experience across four case studies to examine how patient centricity is essential in shaping development and validation of digital evidence generation tools. Key Messages: In this paper, we discuss progress and the remaining barriers to widespread use of digital measures for evidence generation in clinical development and care delivery. We also present key discussion points and takeaways in order to continue discourse and provide a basis for dissemination and outreach to the wider community and other stakeholders. The work presented here shows us a blueprint for how and why the patient voice can be thoughtfully integrated into digital measure development and that continued multistakeholder engagement is critical for further progress.
RESUMO
The ability to objectively measure aspects of performance and behavior is a fundamental pillar of digital health, enabling digital wellness products, decentralized trial concepts, evidence generation, digital therapeutics, and more. Emerging multimodal technologies capable of measuring several modalities simultaneously and efforts to integrate inputs across several sources are further expanding the limits of what digital measures can assess. Experts from the field of digital health were convened as part of a multi-stakeholder workshop to examine the progress of multimodal digital measures in two key areas: detection of disease and the measurement of meaningful aspects of health relevant to the quality of life. Here we present a meeting report, summarizing key discussion points, relevant literature, and finally a vision for the immediate future, including how multimodal measures can provide value to stakeholders across drug development and care delivery, as well as three key areas where headway will need to be made if we are to continue to build on the encouraging progress so far: collaboration and data sharing, removal of barriers to data integration, and alignment around robust modular evaluation of new measurement capabilities.
Assuntos
Atenção à Saúde , Qualidade de Vida , Desenvolvimento de Medicamentos , Humanos , Disseminação de InformaçãoRESUMO
BACKGROUND: Digital technologies are transforming the health care system. A large part of information is generated as real-world data (RWD). Data from electronic health records and digital biomarkers have the potential to reveal associations between the benefits and adverse events of medicines, establish new patient-stratification principles, expose unknown disease correlations, and inform on preventive measures. The impact for health care payers and providers, the biopharmaceutical industry, and governments is massive in terms of health outcomes, quality of care, and cost. However, a framework to assess the preliminary quality of RWD is missing, thus hindering the conduct of population-based observational studies to support regulatory decision-making and real-world evidence. OBJECTIVE: To address the need to qualify RWD, we aimed to build a web application as a tool to translate characterization of some quality parameters of RWD into a metric and propose a standard framework for evaluating the quality of the RWD. METHODS: The RWD-Cockpit systematically scores data sets based on proposed quality metrics and customizable variables chosen by the user. Sleep RWD generated de novo and publicly available data sets were used to validate the usability and applicability of the web application. The RWD quality score is based on the evaluation of 7 variables: manageability specifies access and publication status; complexity defines univariate, multivariate, and longitudinal data; sample size indicates the size of the sample or samples; privacy and liability stipulates privacy rules; accessibility specifies how the data set can be accessed and to what granularity; periodicity specifies how often the data set is updated; and standardization specifies whether the data set adheres to any specific technical or metadata standard. These variables are associated with several descriptors that define specific characteristics of the data set. RESULTS: To address the need to qualify RWD, we built the RWD-Cockpit web application, which proposes a framework and applies a common standard for a preliminary evaluation of RWD quality across data sets-molecular, phenotypical, and social-and proposes a standard that can be further personalized by the community retaining an internal standard. Applied to 2 different case studies-de novo-generated sleep data and publicly available data sets-the RWD-Cockpit could identify and provide researchers with variables that might increase quality. CONCLUSIONS: The results from the application of the framework of RWD metrics implemented in the RWD-Cockpit application suggests that multiple data sets can be preliminarily evaluated in terms of quality using the proposed metrics. The output scores-quality identifiers-provide a first quality assessment for the use of RWD. Although extensive challenges remain to be addressed to set RWD quality standards, our proposal can serve as an initial blueprint for community efforts in the characterization of RWD quality for regulated settings.
RESUMO
BACKGROUND: In 2017, an estimated 17.3 million adults in the United States experienced at least one major depressive episode, with 35% of them not receiving any treatment. Underdiagnosis of depression has been attributed to many reasons, including stigma surrounding mental health, limited access to medical care, and barriers due to cost. OBJECTIVE: This study aimed to determine if low-burden personal health solutions, leveraging person-generated health data (PGHD), could represent a possible way to increase engagement and improve outcomes. METHODS: Here, we present the development of PSYCHE-D (Prediction of Severity Change-Depression), a predictive model developed using PGHD from more than 4000 individuals, which forecasts the long-term increase in depression severity. PSYCHE-D uses a 2-phase approach. The first phase supplements self-reports with intermediate generated labels, and the second phase predicts changing status over a 3-month period, up to 2 months in advance. The 2 phases are implemented as a single pipeline in order to eliminate data leakage and ensure results are generalizable. RESULTS: PSYCHE-D is composed of 2 Light Gradient Boosting Machine (LightGBM) algorithm-based classifiers that use a range of PGHD input features, including objective activity and sleep, self-reported changes in lifestyle and medication, and generated intermediate observations of depression status. The approach generalizes to previously unseen participants to detect an increase in depression severity over a 3-month interval, with a sensitivity of 55.4% and a specificity of 65.3%, nearly tripling sensitivity while maintaining specificity when compared with a random model. CONCLUSIONS: These results demonstrate that low-burden PGHD can be the basis of accurate and timely warnings that an individual's mental health may be deteriorating. We hope this work will serve as a basis for improved engagement and treatment of individuals experiencing depression.
Assuntos
Transtorno Depressivo Maior , Adulto , Estudos de Casos e Controles , Depressão/diagnóstico , Humanos , Saúde Mental , AutorrelatoRESUMO
In 2019, Germany passed the Digital Healthcare Act, which, among other things, created a "Fast-Track" regulatory and reimbursement pathway for digital health applications in the German market. The pathway explicitly provides for flexibility in how researchers can present evidence for new digital products, including the use of real-world data and real-world evidence. Against this backdrop, the Digital Medicine Society and the Health Innovation Hub of the German Federal Ministry of Health convened a set of roundtable discussions to bring together international experts in evidence generation for digital medicine products. This Viewpoint highlights findings from these discussions with the aims of (1) accelerating and stimulating innovative approaches to digital medical product evaluation, and (2) promoting international harmonisation of best evidentiary practices. Advancing these topics and fostering international agreement on evaluation approaches will be vital to the safe, effective, and evidence-based deployment and acceptance of digital health applications globally.
Assuntos
Atenção à Saúde , Instalações de Saúde , AlemanhaRESUMO
Data integration, the processes by which data are aggregated, combined, and made available for use, has been key to the development and growth of many technological solutions. In health care, we are experiencing a revolution in the use of sensors to collect data on patient behaviors and experiences. Yet, the potential of this data to transform health outcomes is being held back. Deficits in standards, lexicons, data rights, permissioning, and security have been well documented, less so the cultural adoption of sensor data integration as a priority for large-scale deployment and impact on patient lives. The use and reuse of trustworthy data to make better and faster decisions across drug development and care delivery will require an understanding of all stakeholder needs and best practices to ensure these needs are met. The Digital Medicine Society is launching a new multistakeholder Sensor Data Integration Tour of Duty to address these challenges and more, providing a clear direction on how sensor data can fulfill its potential to enhance patient lives.
Assuntos
Coleta de Dados , Atenção à Saúde , Humanos , TecnologiaRESUMO
At the end of 2020, Karger's Digital Biomarkers, together with Evidation Health, produced a special issue entitled "The Future of Digital Health." This brief meeting report provides an overview of the expert panel and workshop that were held in early 2021 to explore key topics raised in the special issue.
RESUMO
To support the successful adoption of digital measures into internal decision making and evidence generation for medical product development, we present a unified lexicon to aid communication throughout this process, and highlight key concepts including the critical role of participant engagement in development of digital measures. We detail the steps of bringing a successful proof of concept to scale, focusing on key decisions in the development of a new digital measure: asking the right question, optimized approaches to evaluating new measures, and whether and how to pursue qualification or acceptance. Building on the V3 framework for establishing verification and analytical and clinical validation, we discuss strategic and practical considerations for collecting this evidence, illustrated with concrete examples of trailblazing digital measures in the field.
RESUMO
The fight against COVID-19 is hindered by similarly presenting viral infections that may confound detection and monitoring. We examined person-generated health data (PGHD), consisting of survey and commercial wearable data from individuals' everyday lives, for 230 people who reported a COVID-19 diagnosis between March 30, 2020, and April 27, 2020 (n = 41 with wearable data). Compared with self-reported diagnosed flu cases from the same time frame (n = 426, 85 with wearable data) or pre-pandemic (n = 6,270, 1,265 with wearable data), COVID-19 patients reported a distinct symptom constellation that lasted longer (median of 12 versus 9 and 7 days, respectively) and peaked later after illness onset. Wearable data showed significant changes in daily steps and prevalence of anomalous resting heart rate measurements, of similar magnitudes for both the flu and COVID-19 cohorts. Our findings highlight the need to include flu comparator arms when evaluating PGHD applications aimed to be highly specific for COVID-19.
RESUMO
Digital measures are becoming more prevalent in clinical development. Methods for robust evaluation are increasingly well defined, yet the primary barrier for digital measures to transition beyond exploratory usage often relies on a comparison to the existing standards. This article focuses on how researchers should approach the complex issue of comparing across assessment modalities. We discuss comparisons of subjective versus objective assessments, or performance-based versus behavioral measures, and we pay particular attention to the situation where the expected association may be poor or nonlinear. We propose that, rather than seeking to replace the standard, research should focus on a structured understanding of how the new measure augments established assessments, with the ultimate goal of developing a more complete understanding of what is meaningful to patients.
RESUMO
Analyzing human gait with inertial sensors provides valuable insights into a wide range of health impairments, including many musculoskeletal and neurological diseases. A representative and reliable assessment of gait requires continuous monitoring over long periods and ideally takes place in the subjects' habitual environment (real-world). An inconsistent sensor wearing position can affect gait characterization and influence clinical study results, thus clinical study protocols are typically highly proscriptive, instructing all participants to wear the sensor in a uniform manner. This restrictive approach improves data quality but reduces overall adherence. In this work, we analyze the impact of altering the sensor wearing position around the waist on sensor signal and step detection. We demonstrate that an asymmetrically worn sensor leads to additional odd-harmonic frequency components in the frequency spectrum. We propose a robust solution for step detection based on autocorrelation to overcome sensor position variation (sensitivity = 0.99, precision = 0.99). The proposed solution reduces the impact of inconsistent sensor positioning on gait characterization in clinical studies, thus providing more flexibility to protocol implementation and more freedom to participants to wear the sensor in the position most comfortable to them. This work is a first step towards truly position-agnostic gait assessment in clinical settings.
RESUMO
BACKGROUND: Fatigue is a broad, multifactorial concept encompassing feelings of reduced physical and mental energy levels. Fatigue strongly impacts patient health-related quality of life across a huge range of conditions, yet, to date, tools available to understand fatigue are severely limited. METHODS: After using a recurrent neural network-based algorithm to impute missing time series data form a multisensor wearable device, we compared supervised and unsupervised machine learning approaches to gain insights on the relationship between self-reported non-pathological fatigue and multimodal sensor data. RESULTS: A total of 27 healthy subjects and 405 recording days were analyzed. Recorded data included continuous multimodal wearable sensor time series on physical activity, vital signs, and other physiological parameters, and daily questionnaires on fatigue. The best results were obtained when using the causal convolutional neural network model for unsupervised representation learning of multivariate sensor data, and random forest as a classifier trained on subject-reported physical fatigue labels (weighted precision of 0.70 ± 0.03 and recall of 0.73 ± 0.03). When using manually engineered features on sensor data to train our random forest (weighted precision of 0.70 ± 0.05 and recall of 0.72 ± 0.01), both physical activity (energy expenditure, activity counts, and steps) and vital signs (heart rate, heart rate variability, and respiratory rate) were important parameters to measure. Furthermore, vital signs contributed the most as top features for predicting mental fatigue compared to physical ones. These results support the idea that fatigue is a highly multimodal concept. Analysis of clusters from sensor data highlighted a digital phenotype indicating the presence of fatigue (95% of observations) characterized by a high intensity of physical activity. Mental fatigue followed similar trends but was less predictable. Potential future directions could focus on anomaly detection assuming longer individual monitoring periods. CONCLUSION: Taken together, these results are the first demonstration that multimodal digital data can be used to inform, quantify, and augment subjectively captured non-pathological fatigue measures.
RESUMO
INTRODUCTION: A major challenge in the monitoring of rehabilitation is the lack of long-term individual baseline data which would enable accurate and objective assessment of functional recovery. Consumer-grade wearable devices enable the tracking of individual everyday functioning prior to illness or other medical events which necessitate the monitoring of recovery trajectories. METHODS: For 1,324 individuals who underwent surgery on a lower limb, we collected their Fitbit device data of steps, heart rate, and sleep from 26 weeks before to 26 weeks after the self-reported surgery date. We identified subgroups of individuals who self-reported surgeries for bone fracture repair (n = 355), tendon or ligament repair/reconstruction (n = 773), and knee or hip joint replacement (n = 196). We used linear mixed models to estimate the average effect of time relative to surgery on daily activity measurements while adjusting for gender, age, and the participant-specific activity baseline. We used a sub-cohort of 127 individuals with dense wearable data who underwent tendon/ligament surgery and employed XGBoost to predict the self-reported recovery time. RESULTS: The 1,324 study individuals were all US residents, predominantly female (84%), white or Caucasian (85%), and young to middle-aged (mean age 36.2 years). We showed that 12 weeks pre- and 26 weeks post-surgery trajectories of daily behavioral measurements (steps sum, heart rate, sleep efficiency score) can capture activity changes relative to an individual's baseline. We demonstrated that the trajectories differ across surgery types, recapitulate the documented effect of age on functional recovery, and highlight differences in relative activity change across self-reported recovery time groups. Finally, using a sub-cohort of 127 individuals, we showed that long-term recovery can be accurately predicted, on an individual level, only 1 month after surgery (AUROC 0.734, AUPRC 0.8). Furthermore, we showed that predictions are most accurate when long-term, individual baseline data are available. DISCUSSION: Leveraging long-term, passively collected wearable data promises to enable relative assessment of individual recovery and is a first step towards data-driven intervention for individuals.