Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
NPJ Digit Med ; 7(1): 136, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783001

RESUMO

Data from commercial off-the-shelf (COTS) wearables leveraged with machine learning algorithms provide an unprecedented potential for the early detection of adverse physiological events. However, several challenges inhibit this potential, including (1) heterogeneity among and within participants that make scaling detection algorithms to a general population less precise, (2) confounders that lead to incorrect assumptions regarding a participant's healthy state, (3) noise in the data at the sensor level that limits the sensitivity of detection algorithms, and (4) imprecision in self-reported labels that misrepresent the true data values associated with a given physiological event. The goal of this study was two-fold: (1) to characterize the performance of such algorithms in the presence of these challenges and provide insights to researchers on limitations and opportunities, and (2) to subsequently devise algorithms to address each challenge and offer insights on future opportunities for advancement. Our proposed algorithms include techniques that build on determining suitable baselines for each participant to capture important physiological changes and label correction techniques as it pertains to participant-reported identifiers. Our work is validated on potentially one of the largest datasets available, obtained with 8000+ participants and 1.3+ million hours of wearable data captured from Oura smart rings. Leveraging this extensive dataset, we achieve pre-symptomatic detection of COVID-19 with a performance receiver operator characteristic (ROC) area under the curve (AUC) of 0.725 without correction techniques, 0.739 with baseline correction, 0.740 with baseline correction and label correction on the training set, and 0.777 with baseline correction and label correction on both the training and the test set. Using the same respective paradigms, we achieve ROC AUCs of 0.919, 0.938, 0.943 and 0.994 for the detection of self-reported fever, and 0.574, 0.611, 0.601, and 0.635 for detection of self-reported shortness of breath. These techniques offer improvements across almost all metrics and events, including PR AUC, sensitivity at 75% specificity, and precision at 75% recall. The ring allows continuous monitoring for detection of event onset, and we further demonstrate an improvement in the early detection of COVID-19 from an average of 3.5 days to an average of 4.1 days before a reported positive test result.

3.
Clin Gastroenterol Hepatol ; 21(6): 1672-1673, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36087712
4.
Commun Med (Lond) ; 2: 104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992892

RESUMO

Background: Predisposition to become HIV positive (HIV + ) is influenced by a wide range of correlated economic, environmental, demographic, social, and behavioral factors. While evidence among a candidate handful have strong evidence, there is lack of a consensus among the vast array of variables measured in large surveys. Methods: We performed a comprehensive data-driven search for correlates of HIV positivity in >600,000 participants of the Demographic and Health Survey across 29 sub-Saharan African countries from 2003 to 2017. We associated a total of 7251 and of 6,288 unique variables with HIV positivity in females and males respectively in each of the 50 surveys. We performed a meta-analysis within countries to attain 29 country-specific associations. Results: Here we identify 344 (5.4% out possible) and 373 (5.1%) associations with HIV + in males and females, respectively, with robust statistical support. The associations are consistent in directionality across countries and sexes. The association sizes among individual correlates and their predictive capability were low to modest, but comparable to established factors. Among the identified associations, variables identifying being head of household among females was identified in 17 countries with a mean odds ratio (OR) of 2.5 (OR range: 1.1-3.5, R2 = 0.01). Other common associations were identified, including marital status, education, age, and ownership of land or livestock. Conclusions: Our continent-wide search for variables has identified under-recognized variables associated with being HIV + that are consistent across the continent and sex. Many of the association sizes are as high as established risk factors for HIV positivity, including male circumcision.

6.
Sci Rep ; 12(1): 3463, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236896

RESUMO

Early detection of diseases such as COVID-19 could be a critical tool in reducing disease transmission by helping individuals recognize when they should self-isolate, seek testing, and obtain early medical intervention. Consumer wearable devices that continuously measure physiological metrics hold promise as tools for early illness detection. We gathered daily questionnaire data and physiological data using a consumer wearable (Oura Ring) from 63,153 participants, of whom 704 self-reported possible COVID-19 disease. We selected 73 of these 704 participants with reliable confirmation of COVID-19 by PCR testing and high-quality physiological data for algorithm training to identify onset of COVID-19 using machine learning classification. The algorithm identified COVID-19 an average of 2.75 days before participants sought diagnostic testing with a sensitivity of 82% and specificity of 63%. The receiving operating characteristic (ROC) area under the curve (AUC) was 0.819 (95% CI [0.809, 0.830]). Including continuous temperature yielded an AUC 4.9% higher than without this feature. For further validation, we obtained SARS CoV-2 antibody in a subset of participants and identified 10 additional participants who self-reported COVID-19 disease with antibody confirmation. The algorithm had an overall ROC AUC of 0.819 (95% CI [0.809, 0.830]), with a sensitivity of 90% and specificity of 80% in these additional participants. Finally, we observed substantial variation in accuracy based on age and biological sex. Findings highlight the importance of including temperature assessment, using continuous physiological features for alignment, and including diverse populations in algorithm development to optimize accuracy in COVID-19 detection from wearables.


Assuntos
Temperatura Corporal , COVID-19/diagnóstico , Dispositivos Eletrônicos Vestíveis , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , COVID-19/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Adulto Jovem
8.
Front Physiol ; 12: 691074, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552498

RESUMO

Background and Objectives: Early warning of bacterial and viral infection, prior to the development of overt clinical symptoms, allows not only for improved patient care and outcomes but also enables faster implementation of public health measures (patient isolation and contact tracing). Our primary objectives in this effort are 3-fold. First, we seek to determine the upper limits of early warning detection through physiological measurements. Second, we investigate whether the detected physiological response is specific to the pathogen. Third, we explore the feasibility of extending early warning detection with wearable devices. Research Methods: For the first objective, we developed a supervised random forest algorithm to detect pathogen exposure in the asymptomatic period prior to overt symptoms (fever). We used high-resolution physiological telemetry data (aortic blood pressure, intrathoracic pressure, electrocardiograms, and core temperature) from non-human primate animal models exposed to two viral pathogens: Ebola and Marburg (N = 20). Second, to determine reusability across different pathogens, we evaluated our algorithm against three independent physiological datasets from non-human primate models (N = 13) exposed to three different pathogens: Lassa and Nipah viruses and Y. pestis. For the third objective, we evaluated performance degradation when the algorithm was restricted to features derived from electrocardiogram (ECG) waveforms to emulate data from a non-invasive wearable device. Results: First, our cross-validated random forest classifier provides a mean early warning of 51 ± 12 h, with an area under the receiver-operating characteristic curve (AUC) of 0.93 ± 0.01. Second, our algorithm achieved comparable performance when applied to datasets from different pathogen exposures - a mean early warning of 51 ± 14 h and AUC of 0.95 ± 0.01. Last, with a degraded feature set derived solely from ECG, we observed minimal degradation - a mean early warning of 46 ± 14 h and AUC of 0.91 ± 0.001. Conclusion: Under controlled experimental conditions, physiological measurements can provide over 2 days of early warning with high AUC. Deviations in physiological signals following exposure to a pathogen are due to the underlying host's immunological response and are not specific to the pathogen. Pre-symptomatic detection is strong even when features are limited to ECG-derivatives, suggesting that this approach may translate to non-invasive wearable devices.

9.
PLoS Biol ; 19(9): e3001398, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34555021

RESUMO

Hypothesis generation in observational, biomedical data science often starts with computing an association or identifying the statistical relationship between a dependent and an independent variable. However, the outcome of this process depends fundamentally on modeling strategy, with differing strategies generating what can be called "vibration of effects" (VoE). VoE is defined by variation in associations that often lead to contradictory results. Here, we present a computational tool capable of modeling VoE in biomedical data by fitting millions of different models and comparing their output. We execute a VoE analysis on a series of widely reported associations (e.g., carrot intake associated with eyesight) with an extended additional focus on lifestyle exposures (e.g., physical activity) and components of the Framingham Risk Score for cardiovascular health (e.g., blood pressure). We leveraged our tool for potential confounder identification, investigating what adjusting variables are responsible for conflicting models. We propose modeling VoE as a critical step in navigating discovery in observational data, discerning robust associations, and cataloging adjusting variables that impact model output.


Assuntos
Ciência de Dados/métodos , Modelos Estatísticos , Estudos Observacionais como Assunto/estatística & dados numéricos , Métodos Epidemiológicos , Humanos
10.
Artigo em Inglês | MEDLINE | ID: mdl-32098896

RESUMO

OBJECTIVE: Prior studies examining diabetes prevalence in India have found that nearly 50% of the diabetes population remains undiagnosed; however, the specific populations at risk are unclear. RESEARCH DESIGN AND METHODS: First, we estimated the prevalence of undiagnosed diabetes in India for 750 924 persons between the ages of 15 years and 50 years who participated in the National Family Health Survey (NFHS-4)/Demographic Health Survey (2015-2016), a cross-sectional survey of all 29 states and 7 union territories of India. We defined 'undiagnosed diabetes' as individuals who did not know about their diabetes status but had high random (≥200 mg/dL) or fasting (≥126 mg/dL) blood glucose levels. Second, using Poisson regression, we associated 10 different factors, including the role of healthcare access, and undiagnosed diabetes. Third, we examined the association of undiagnosed diabetes with other potential comorbid conditions. RESULTS: The crude prevalence of diabetes for women and men aged 15-50 years was 2.9%, 95% CI 2.9% to 3.1%, with self-reported diabetes prevalence at 1.7%, 95% CI 1.6 to 1.8. The overall prevalence of undiagnosed diabetes for 15-50 year olds was at 1.2%, 95% CI 1.2% to 1.3%. Forty-two per cent, 95% CI 40.7% to 43.4% of the individuals with high glucose levels were unaware of their diabetes status. Approximately 45%, 95% CI 42.9% to 46.4% of undiagnosed diabetes population had access to healthcare. Men, younger individuals, and those with lower levels of education were most at risk of being undiagnosed. Geographically, the Southern states in India had a significantly higher prevalence of undiagnosed diabetes despite having nearly universal access to healthcare. Risk factors combined with random glucose could predict undiagnosed diabetes (area under the curve of 97.8%, 95% CI 97.7% to 97.8%), Nagelkerke R2 of 66%). CONCLUSION: Close to half (42%) of the people with diabetes in India are not aware of their disease status, and a large subset of these people are at risk of poor detection, despite having health insurance and/or having access to healthcare. Younger age groups and men are the most vulnerable.


Assuntos
Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiologia , Doenças não Diagnosticadas/diagnóstico , Doenças não Diagnosticadas/epidemiologia , Adolescente , Adulto , Fatores Etários , Glicemia/análise , Estudos de Coortes , Estudos Transversais , Diabetes Mellitus/sangue , Jejum/sangue , Feminino , Inquéritos Epidemiológicos , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Autorrelato , Fatores Sexuais , Doenças não Diagnosticadas/sangue , Adulto Jovem
11.
IEEE Access ; 8: 127535-127545, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33747676

RESUMO

Autism Spectrum Disorder (ASD) is a developmental disorder characterized by difficulty in communication, which includes a high incidence of speech production errors. We hypothesize that these errors are partly due to underlying deficits in motor coordination and control, which are also manifested in degraded fine motor control of facial expressions and purposeful hand movements. In this pilot study, we computed correlations of acoustic, video, and handwriting time-series derived from five children with ASD and five children with neurotypical development during speech and handwriting tasks. These correlations and eigenvalues derived from the correlations act as a proxy for motor coordination across articulatory, laryngeal, and respiratory speech production systems and for fine motor skills. We utilized features derived from these correlations to discriminate between children with and without ASD. Eigenvalues derived from these correlations highlighted differences in complexity of coordination across speech subsystems and during handwriting, and helped discriminate between the two subject groups. These results suggest differences in coupling within speech production and fine motor skill systems in children with ASD. Our long-term goal is to create a platform assessing motor coordination in children with ASD in order to track progress from speech and motor interventions administered by clinicians.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA