RESUMO
Despite the clinical and molecular heterogeneity of follicular lymphoma (FL), there remains a lack of biomarker-directed therapeutic approaches in routine clinical practice, with the notable exception of the EZH2 inhibitor tazemetostat in EZH2-mutant FL. Here we examined whether gene mutation status predicts response to clinical mTOR inhibitors (mTORi) in FL, by performing targeted mutational profiling of biopsies from 21 relapsed/refractory FL patients treated with mTORi everolimus or temsirolimus within clinical trials. We observed an enrichment of mutations within the catalytic histone acetyltransferase (HAT) domain of CREBBP in mTORi-responders, and describe distinct transcriptional characteristics and co-occurring mutations of FL harbouring these mutations; reinforcing the growing appreciation of CREBBPHAT mutation as a key biological determinant and its promise as a therapeutic biomarker in FL.
RESUMO
AIMS: Subclassification of large B cell lymphoma (LBCL) is challenging due to the overlap in histopathological, immunophenotypical and genetic data. In particular, the criteria to separate diffuse large B cell lymphoma (DLBCL) and high-grade B cell lymphoma (HGBL) are difficult to apply in practice. The Lunenburg Lymphoma Biomarker Consortium previously reported a cohort of over 5000 LBCL that included fluorescence in-situ hybridisation (FISH) data. This cohort contained 209 cases with MYC rearrangement that were available for a validation study by a panel of eight expert haematopathologists of how various histopathological features are used. METHODS AND RESULTS: Digital whole slide images of haematoxylin and eosin-stained sections allowed the pathologists to visually score cases independently as well as participate in virtual joint review conferences. Standardised consensus guidelines were formulated for scoring histopathological features and included overall architecture/growth pattern, presence or absence of a starry-sky pattern, cell size, nuclear pleomorphism, nucleolar prominence and a range of cytological characteristics. Despite the use of consensus guidelines, the results show a high degree of discordance among the eight expert pathologists. Approximately 50% of the cases lacked a majority score, and this discordance spanned all six histopathological features. Moreover, none of the histological variables aided in prediction of MYC single versus double/triple-hit or immunoglobulin-partner FISH-based designations or clinical outcome measures. CONCLUSIONS: Our findings indicate that there are no specific conventional morphological parameters that help to subclassify MYC-rearranged LBCL or select cases for FISH analysis, and that incorporation of FISH data is essential for accurate classification and prognostication.
Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Reprodutibilidade dos Testes , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Biomarcadores , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Rearranjo GênicoRESUMO
Despite the effectiveness of immuno-chemotherapy, 40% of patients with diffuse large B-cell lymphoma (DLBCL) experience relapse or refractory disease. Longitudinal studies have previously focused on the mutational landscape of relapse but fell short of providing a consistent relapse-specific genetic signature. In our study, we have focused attention on the changes in GEP accompanying DLBCL relapse using archival paired diagnostic/relapse specimens from 38 de novo patients with DLBCL. COO remained stable from diagnosis to relapse in 80% of patients, with only a single patient showing COO switching from activated B-cell-like (ABC) to germinal center B-cell-like (GCB). Analysis of the transcriptomic changes that occur following relapse suggest ABC and GCB relapses are mediated via different mechanisms. We developed a 30-gene discriminator for ABC-DLBCLs derived from relapse-associated genes that defined clinically distinct high- and low-risk subgroups in ABC-DLBCLs at diagnosis in datasets comprising both population-based and clinical trial cohorts. This signature also identified a population of <60-year-old patients with superior PFS and OS treated with ibrutinib-R-CHOP as part of the PHOENIX trial. Altogether this new signature adds to the existing toolkit of putative genetic predictors now available in DLBCL that can be readily assessed as part of prospective clinical trials.
Assuntos
Linfoma Difuso de Grandes Células B , Recidiva Local de Neoplasia , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfócitos B/metabolismo , Centro Germinativo/metabolismoRESUMO
Classical Hodgkin lymphoma (CHL) is unusually sensitive to PD1 inhibition and PDL1 is highly expressed on CHL cells and in the tumor microenvironment. This could be interpreted as evidence of exhaustion, but paradoxically, PD1+ lymphocyte infiltration does not predict response to PD1 inhibitors and no increase in cytotoxic markers is seen after PD1 therapy as might be expected with reversal of exhaustion. In contrast to PD1, elevated PDL1 does predict response to PD1 inhibitors and recent data associate both retained CHL MHC-II expression and increased T helper (TH) T-cell receptor diversity with response, suggesting a connection to the TH compartment. We performed a phenotypic, spatial and functional assessment of T-cell exhaustion in CHL and found co-expression of an exhaustion marker and lower PD1 expression in CHL than in reactive nodes whereas the proliferative and cytokine production capacity were similar in CHL and the reactive nodes. We found no correlation between PDL1 expression and exhaustion signatures. Instead, we identified a strong association between PDL1 expression and CHL MHC-II expression, TH recruitment, and enrichment of TH1 regulatory cells. These data suggest that a dominant effect of PDL1 expression in CHL may be TH engagement and promotion of a regulatory microenvironment rather than maintenance of exhaustion.
Assuntos
Doença de Hodgkin , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Doença de Hodgkin/patologia , Exaustão das Células T , Linfócitos T Auxiliares-Indutores/metabolismo , Células Th1/patologia , Microambiente TumoralRESUMO
Although the genomic and immune microenvironmental landscape of follicular lymphoma (FL) has been extensively investigated, little is known about the potential biological differences between stage I and stage III/IV disease. Using next-generation sequencing and immunohistochemistry, 82 FL nodal stage I cases were analyzed and compared with 139 FL stage III/IV nodal cases. Many similarities in mutations, chromosomal copy number aberrations, and microenvironmental cell populations were detected. However, there were also significant differences in microenvironmental and genomic features. CD8+ T cells (P = .02) and STAT6 mutations (false discovery rate [FDR] <0.001) were more frequent in stage I FL. In contrast, programmed cell death protein 1-positive T cells, CD68+/CD163+ macrophages (P < .001), BCL2 translocation (BCL2trl+) (P < .0001), and KMT2D (FDR = 0.003) and CREBBP (FDR = 0.04) mutations were found more frequently in stage III/IV FL. Using clustering, we identified 3 clusters within stage I, and 2 clusters within stage III/IV. The BLC2trl+ stage I cluster was comparable to the BCL2trl+ cluster in stage III/IV. The two BCL2trl- stage I clusters were unique for stage I. One was enriched for CREBBP (95%) and STAT6 (64%) mutations, without BLC6 translocation (BCL6trl), whereas the BCL2trl- stage III/IV cluster contained BCL6trl (64%) with fewer CREBBP (45%) and STAT6 (9%) mutations. The other BCL2trl- stage I cluster was relatively heterogeneous with more copy number aberrations and linker histone mutations. This exploratory study shows that stage I FL is genetically heterogeneous with different underlying oncogenic pathways. Stage I FL BCL2trl- is likely STAT6 driven, whereas BCL2trl- stage III/IV appears to be more BCL6trl driven.
Assuntos
Linfoma Folicular , Genômica , Histonas/genética , Humanos , Linfoma Folicular/genética , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Translocação GenéticaRESUMO
It has been unclear what role metabolism is playing in the pathophysiology of chronic lymphocytic leukemia (CLL). One reason is that the study of CLL metabolism is challenging due to the resting nature of circulating CLL cells. Also, it is not clear if any of the genomic aberrations observed in this disease have any impact on metabolism. Here, we demonstrate that CLL cells in proliferation centers exhibit upregulation of several molecules involved in glycolysis and mitochondrial metabolism. Comparison of CXCR4/CD5 intraclonal cell subpopulations showed that these changes are paralleled by increases in the metabolic activity of the CXCR4lowCD5high fraction that have recently egressed from the lymph nodes. Notably, anti-IgM stimulation of CLL cells recapitulates many of these metabolic alterations, including increased glucose uptake, increased lactate production, induction of glycolytic enzymes, and increased respiratory reserve. Treatment of CLL cells with inhibitors of B-cell receptor (BCR) signaling blocked these anti-IgM-induced changes in vitro, which was mirrored by decreases in hexokinase 2 expression in CLL cells from ibrutinib-treated patients in vivo. Interestingly, several samples from patients with 17p-deletion manifested increased spontaneous aerobic glycolysis in the unstimulated state suggestive of a BCR-independent metabolic phenotype. We conclude that the proliferative fraction of CLL cells found in lymphoid tissues or the peripheral blood of CLL patients exhibit increased metabolic activity when compared with the bulk CLL-cell population. Although this is due to microenvironmental stimulatory signals such as BCR-engagement in most cases, increases in resting metabolic activity can be observed in cases with 17p-deletion.
RESUMO
The synthesis of serine from glucose is a key metabolic pathway supporting cellular proliferation in healthy and malignant cells. Despite this, the role that this aspect of metabolism plays in germinal center biology and pathology is not known. Here, we performed a comprehensive characterization of the role of the serine synthesis pathway in germinal center B cells and lymphomas derived from these cells. We demonstrate that upregulation of a functional serine synthesis pathway is a metabolic hallmark of B cell activation and the germinal center reaction. Inhibition of phosphoglycerate dehydrogenase (PHGDH), the first and rate-limiting enzyme in this pathway, led to defective germinal formation and impaired high-affinity antibody production. In addition, overexpression of enzymes involved in serine synthesis was a characteristic of germinal center B cell-derived lymphomas, with high levels of expression being predictive of reduced overall survival in diffuse large B cell lymphoma. Inhibition of PHGDH induced apoptosis in lymphoma cells, reducing disease progression. These findings establish PHGDH as a critical player in humoral immunity and a clinically relevant target in lymphoma.
Assuntos
Linfoma de Células B , Linfoma , Proliferação de Células , Centro Germinativo , Humanos , Linfoma/genética , Linfoma de Células B/genética , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Serina/metabolismoRESUMO
BACKGROUND AND AIMS: The presence of tertiary lymphoid structures (TLSs) may confer survival benefit to patients with pancreatic ductal adenocarcinoma (PDAC), in an otherwise immunologically inert malignancy. Yet, the precise role in PDAC has not been elucidated. Here, we aim to investigate the structure and role of TLSs in human and murine pancreatic cancer. METHODS: Multicolor immunofluorescence and immunohistochemistry were used to fully characterize TLSs in human and murine (transgenic [KPC (KrasG12D, p53R172H, Pdx-1-Cre)] and orthotopic) pancreatic cancer. An orthotopic murine model was developed to study the development of TLSs and the effect of the combined chemotherapy and immunotherapy on tumor growth. RESULTS: Mature, functional TLSs are not ubiquitous in human PDAC and KPC murine cancers and are absent in the orthotopic murine model. TLS formation can be induced in the orthotopic model of PDAC after intratumoral injection of lymphoid chemokines (CXCL13/CCL21). Coadministration of systemic chemotherapy (gemcitabine) and intratumoral lymphoid chemokines into orthotopic tumors altered immune cell infiltration ,facilitating TLS induction and potentiating antitumor activity of chemotherapy. This resulted in significant tumor reduction, an effect not achieved by either treatment alone. Antitumor activity seen after TLS induction is associated with B cell-mediated dendritic cell activation. CONCLUSIONS: This study provides supportive evidence that TLS induction may potentiate the antitumor activity of chemotherapy in a murine model of PDAC. A detailed understanding of TLS kinetics and their induction, owing to multiple host and tumor factors, may help design personalized therapies harnessing the potential of immune-oncology.
Assuntos
Antineoplásicos/farmacologia , Neoplasias Pancreáticas/imunologia , Estruturas Linfoides Terciárias/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais , Apresentação de Antígeno , Antineoplásicos/uso terapêutico , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Biomarcadores , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Centro Germinativo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Estruturas Linfoides Terciárias/tratamento farmacológico , Estruturas Linfoides Terciárias/patologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Loss-of-function mutations in KMT2D are a striking feature of germinal center (GC) lymphomas, resulting in decreased histone 3 lysine 4 (H3K4) methylation and altered gene expression. We hypothesized that inhibition of the KDM5 family, which demethylates H3K4me3/me2, would reestablish H3K4 methylation and restore the expression of genes repressed on loss of KMT2D. KDM5 inhibition increased H3K4me3 levels and caused an antiproliferative response in vitro, which was markedly greater in both endogenous and gene-edited KMT2D mutant diffuse large B-cell lymphoma cell lines, whereas tumor growth was inhibited in KMT2D mutant xenografts in vivo. KDM5 inhibition reactivated both KMT2D-dependent and -independent genes, resulting in diminished B-cell signaling and altered expression of B-cell lymphoma 2 (BCL2) family members, including BCL2 itself. KDM5 inhibition may offer an effective therapeutic strategy for ameliorating KMT2D loss-of-function mutations in GC lymphomas.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Mutação com Perda de Função , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Proteína 2 de Ligação ao Retinoblastoma/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Humanos , Linfoma Difuso de Grandes Células B/enzimologia , Linfoma Difuso de Grandes Células B/genética , Camundongos , Proteínas de Neoplasias/genética , Proteína 2 de Ligação ao Retinoblastoma/genética , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Protective humoral memory forms in secondary lymphoid organs where B cells undergo affinity maturation and differentiation into memory or plasma cells. Here, we provide a comprehensive roadmap of human B cell maturation with single-cell transcriptomics matched with bulk and single-cell antibody repertoires to define gene expression, antibody repertoires, and clonal sharing of B cell states at single-cell resolution, including memory B cell heterogeneity that reflects diverse functional and signaling states. We reconstruct gene expression dynamics during B cell activation to reveal a pre-germinal center state primed to undergo class switch recombination and dissect how antibody class-dependent gene expression in germinal center and memory B cells is linked with a distinct transcriptional wiring with potential to influence their fate and function. Our analyses reveal the dynamic cellular states that shape human B cell-mediated immunity and highlight how antibody isotype may play a role during their antibody-based selection.
Assuntos
Centro Germinativo/metabolismo , Switching de Imunoglobulina/imunologia , Células B de Memória/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Comunicação Celular/imunologia , Diferenciação Celular , Criança , Conjuntos de Dados como Assunto , Centro Germinativo/imunologia , Humanos , Imunoglobulina D/genética , Imunoglobulina D/metabolismo , Imunoglobulina M/genética , Imunoglobulina M/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Tonsila Palatina/imunologia , Tonsila Palatina/metabolismo , Tonsila Palatina/cirurgia , Análise de Célula Única , Baço/imunologia , Baço/metabolismo , Tonsilectomia , Recombinação V(D)J/imunologiaRESUMO
Gastrointestinal (GI) graft-versus-host disease (GVHD) is a major barrier in allogeneic hematopoietic stem cell transplantation (allo-HSCT). The metabolite retinoic acid (RA) potentiates GI-GVHD in mice via alloreactive T cells expressing the RA receptor-α (RARα), but the role of RA-responsive cells in human GI-GVHD remains undefined. Therefore, we used conventional and novel sequential immunostaining and flow cytometry to scrutinize RA-responsive T cells in tissues and blood of patients who had received allo-HSCT and to characterize the impact of RA on human T-cell alloresponses. Expression of RARα by human mononuclear cells was increased after exposure to RA. RARαhi mononuclear cells were increased in GI-GVHD tissue, contained more cellular RA-binding proteins, localized with tissue damage, and correlated with GVHD severity and mortality. By using a targeted candidate protein approach, we predicted the phenotype of RA-responsive T cells in the context of increased microenvironmental interleukin-23 (IL-23). Sequential immunostaining confirmed the presence of a population of RARαhi CD8 T cells with the predicted phenotype that coexpressed the effector T-cell transcription factor T-bet and the IL-23-specific receptor (IL-23R). These cells were increased in GI- but not skin-GVHD tissues and were also selectively expanded in the blood of patients with GI-GVHD. Finally, functional approaches demonstrated that RA predominantly increased alloreactive GI-tropic RARαhi CD8 effector T cells, including cells with the phenotype identified in vivo. IL-23-rich conditions potentiated this effect by selectively increasing ß7 integrin expression on CD8 effector T cells and reducing CD4 T cells with a regulatory cell phenotype. In summary, we have identified a population of RA-responsive effector T cells with a distinctive phenotype that is selectively expanded in human GI-GVHD and that represents a potential new therapeutic target.
Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Gastroenteropatias/imunologia , Doença Enxerto-Hospedeiro/imunologia , Interleucina-23/análise , Tretinoína/farmacologia , Idoso , Linfócitos T CD8-Positivos/imunologia , Divisão Celular , Células Cultivadas , Técnicas de Cocultura , Feminino , Gastroenteropatias/metabolismo , Doença Enxerto-Hospedeiro/sangue , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Receptores de Interleucina/análise , Receptor alfa de Ácido Retinoico/biossíntese , Receptor alfa de Ácido Retinoico/genética , Proteínas com Domínio T/análise , Adulto JovemRESUMO
Importance: Determining the risk of relapse after neoadjuvant chemotherapy in patients with locally advanced breast cancer is required to offer alternative therapeutic strategies. Objective: To examine whether endothelial cell phosphorylated-focal adhesion kinase (EC-pY397-FAK) expression in patients with treatment-naive locally advanced breast cancer is a biomarker for chemotherapy sensitivity and is associated with survival after neoadjuvant chemotherapy. Design, Setting, and Participants: In this prognostic study, expression levels of EC-pY397-FAK and tumor cell (TC)-pY397-FAK were determined by immunohistochemistry in prechemotherapy core biopsies from 82 female patients with locally advanced breast cancer treated with anthracycline-based combination neoadjuvant chemotherapy at Nottingham City Hospital in Nottingham, UK. Median follow-up time was 67 months. The study was conducted from December 1, 2010, to September 28, 2019, and data analysis was performed from October 2, 2019, to March 31, 2020. Exposures: All women underwent surgery followed by adjuvant radiotherapy and, if tumors were estrogen receptor-positive, 5-year tamoxifen treatment. Main Outcomes and Measures: Outcomes were pathologic complete response and 5-year relapse-free survival examined using Kaplan-Meier, univariable logistic, multivariable logistic, and Cox proportional hazards models. Results: A total of 82 women (age, 29-76 years) with locally advanced breast cancer (stage IIA-IIIC) were included. Of these, 21 women (26%) had high EC-pY397-FAK expression that was associated with estrogen receptor positivity (71% vs 46%; P = .04), progesterone receptor positivity (67% vs 39%; P = .03), high Ki67 (86% vs 41%; P < .001), 4-immunohistochemically stained luminal-B (52% vs 8%; P < .001), higher tumor category (T3/T4 category: 90% vs 59%; P = .01), high lymph node category (N2-3 category: 43% vs 5%; P < .001), and high tumor node metastasis stage (IIIA-IIIC: 90% vs 66%; P = .03). Of 21 patients with high EC-pY397-FAK expression levels, none showed pathologic complete response, compared with 11 of 61 patients with low EC-pY397-FAK expression levels who showed pathologic complete response (odds ratio, 0.70; 95% CI, 0.61-0.82; P = .04). High EC-pY397-FAK expression levels and high blood vessel density (BVD) were associated with shorter 5-year relapse-free survival compared with those with low EC-pY397-FAK expression levels (hazard ratio [HR], 2.21; 95% CI, 1.17-4.20; P = .01) and low BVD (HR, 2.2; 95% CI, 1.15-4.35; P = .02). High TC-pY397-FAK expression levels in 15 of 82 women (18%) were not associated significantly with pathologic complete response or 5-year relapse-free survival. A multivariable Cox regression model for 5-year relapse-free survival indicated that high EC-pY397-FAK expression levels was an independent poor prognostic factor after controlling for other validated prognostic factors (HR, 3.91; 95% CI, 1.42-10.74; P = .01). Combined analysis of EC-pY397-FAK expression levels, TC-pY397-FAK expression levels, and BVD improved prognostic significance over individually tested features. Conclusions and Relevance: The findings of this study suggest that low EC-pY397-FAK expression levels are associated with chemotherapy sensitivity and improved 5-year relapse-free survival after systemic therapy. Combined analysis of high EC-pY397-FAK expression levels, high TC-pY397-FAK expression levels, and high BVD appeared to identify a high-risk population.
Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Quinase 1 de Adesão Focal/metabolismo , Adulto , Idoso , Neoplasias da Mama/patologia , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Taxa de SobrevidaRESUMO
Enhanced blood vessel (BV) formation is thought to drive tumor growth through elevated nutrient delivery. However, this observation has overlooked potential roles for mural cells in directly affecting tumor growth independent of BV function. Here we provide clinical data correlating high percentages of mural-ß3-integrin-negative tumor BVs with increased tumor sizes but no effect on BV numbers. Mural-ß3-integrin loss also enhances tumor growth in implanted and autochthonous mouse tumor models with no detectable effects on BV numbers or function. At a molecular level, mural-cell ß3-integrin loss enhances signaling via FAK-p-HGFR-p-Akt-p-p65, driving CXCL1, CCL2, and TIMP-1 production. In particular, mural-cell-derived CCL2 stimulates tumor cell MEK1-ERK1/2-ROCK2-dependent signaling and enhances tumor cell survival and tumor growth. Overall, our data indicate that mural cells can control tumor growth via paracrine signals regulated by ß3-integrin, providing a previously unrecognized mechanism of cancer growth control.
Assuntos
Integrina beta3/metabolismo , Neoplasias/metabolismo , Carga Tumoral/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Humanos , Masculino , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologiaRESUMO
B cell lymphoma-6 (BCL6) is highly expressed in germinal center B cells, but how its expression is maintained is still not completely clear. Aryl hydrocarbon receptor interacting protein (AIP) is a co-chaperone of heat shock protein 90. Deletion of Aip in B cells decreased BCL6 expression, reducing germinal center B cells and diminishing adaptive immune responses. AIP was required for optimal AKT signaling in response to B cell receptor stimulation, and AIP protected BCL6 from ubiquitin-mediated proteasomal degradation by the E3-ubiquitin ligase FBXO11 by binding to the deubiquitinase UCHL1, thus helping to maintain the expression of BCL6. AIP was highly expressed in primary diffuse large B cell lymphomas compared to healthy tissue and other tumors. Our findings describe AIP as a positive regulator of BCL6 expression with implications for the pathobiology of diffuse large B cell lymphoma.
Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfoma Difuso de Grandes Células B/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proteínas F-Box/metabolismo , Feminino , Centro Germinativo/citologia , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteína-Arginina N-Metiltransferases/metabolismo , Proteólise , Ubiquitina Tiolesterase/metabolismo , UbiquitinaçãoRESUMO
In the original version of this article the authors noted an omission in the author affiliations where the university details: Queen Mary University of London was not included in the original affiliation for the majority of the authors. The correct affiliations are as follows1. Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK3. Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK6. Evolution and Cancer Laboratory, Barts Cancer Institute, Queen Mary University of London, London, UK.
RESUMO
Chronic lymphocytic leukemia is a malignancy of mature B cells that strongly depend on microenvironmental factors, and their deprivation has been identified as a promising treatment approach for this incurable disease. Cytokine array screening of 247 chronic lymphocytic leukemia serum samples revealed elevated levels of tumor necrosis factor (TNF) receptor-1 which were associated with poor clinical outcome. We detected a microenvironment-induced expression of TNF receptor-1 in chronic lymphocytic leukemia cells in vitro, and an aberrantly high expression of this receptor in the proliferation centers of patients' lymph nodes. Stimulation of TNF receptor-1 with TNF-α enhanced nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) activity and viability of chronic lymphocytic leukemia cells, which was inhibited by wogonin. The therapeutic effects of wogonin were analyzed in mice after adoptive transfer of Eµ-T-cell leukemia 1 (TCL1) leukemic cells. Wogonin treatment prevented leukemia development when given early after transplantation. The treatment of full-blown leukemia resulted in the loss of the TNF receptor-1 on chronic lymphocytic leukemia cells and their mobilization to blood. Targeting TNF receptor-1 signaling is therefore proposed for the treatment of chronic lymphocytic leukemia.