Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Plant Cell ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916908

RESUMO

Understanding plant responses to individual stresses does not mean that we understand real world situations, where stresses usually combine and interact. These interactions arise at different levels, from stress exposure to the molecular networks of the stress response. Here, we built an in-depth multi-omics description of plant responses to mild water (W) and nitrogen (N) limitations, either individually or combined, among five genetically different Arabidopsis (Arabidopsis thaliana) accessions. We highlight the different dynamics in stress response through integrative traits such as rosette growth and the physiological status of the plants. We also used transcriptomics and metabolomics profiling during a stage when the plant response was stabilized to determine the wide diversity in stress-induced changes among accessions, highlighting the limited reality of a 'universal' stress response. The main effect of the WxN interaction was an attenuation of the N-deficiency syndrome when combined with mild drought, but to a variable extent depending on the accession. Other traits subject to WxN interactions are often accession-specific. Multi-omics analyses identified a subset of transcript-metabolite clusters that are critical to stress responses but essentially variable according to the genotype factor. Including intra-specific diversity in our descriptions of plant stress response places our findings in perspective.

2.
Front Plant Sci ; 15: 1394821, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716339

RESUMO

Botryosphaeria dieback is a grapevine trunk disease caused by fungi of the Botryosphaeriaceae family, which attacks more specifically the woody tissues. The infection leads to different symptoms including a severe form with a leaf drop as well as premature plant death. Botryosphaeria dieback causes major economic losses, since no effective treatment is yet available. A better understanding is necessary to find solutions to fight this disease. In this study, our objective was to characterize the "leaf drop" form by (1) looking for the presence of pathogens in the basal internodes of stems, (2) quantifying blocked vessels by tylosis and/or gummosis, and (3) describing the impact of the disease on vine physiology (gene expression and metabolome) and development (establishment and functioning of the cambium and phellogen) at the level of xylem and phloem of basal stem internodes. Our study has shown that Botryosphaeriaceae were present in both phloem and xylem of the basal internodes of the annual stem, with xylem vessels obturated. We have also clearly demonstrated that gene expression and metabolite profiles were strongly modified in both xylem and phloem of diseased plants. Differences in stems between healthy (control, C) and diseased (D) plants were low at flowering (vines not yet symptomatic), higher at the onset of symptom expression and still present, although less marked, at full disease expression. qRT-PCR analysis showed in both phloem and xylem an overexpression of genes involved in plant defense, and a repression of genes related to meristematic activity (i.e. vascular cambium and phellogen). Metabolomic analysis showed specific fingerprints in stems of healthy and diseased plants from the onset of symptom expression, with an increase of the level of phytoalexins and mannitol, and a decrease of 1-kestose one. At the structural level, many alterations were observed in internodes, even before the onset of symptoms: a classical obstruction of xylem vessels and, for the first time, a disorganization of the secondary phloem with an obstruction of the sieve plates by callose. The disease modifies the development of both secondary phloem (liber) and phellogen. Altogether, this study combining different approaches allowed to highlight deep vine dysfunction in the internodes at the base of stems, that may explain vine decline due to Botryosphaeria dieback.

3.
Plant J ; 118(5): 1635-1651, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38498624

RESUMO

The SID2 (SA INDUCTION-DEFICIENT2) gene that encodes ICS1 (isochorismate synthase), plays a central role in salicylic acid biosynthesis in Arabidopsis. The sid2 and NahG (encoding a bacterial SA hydroxylase) overexpressing mutants (NahG-OE) have currently been shown to outperform wild type, presenting delayed leaf senescence, higher plant biomass and better seed yield. When grown under sulfate-limited conditions (low-S), sid2 mutants exhibited early leaf yellowing compared to the NahG-OE, the npr1 mutant affected in SA signaling pathway, and WT. This indicated that the hypersensitivity of sid2 to sulfate limitation was independent of the canonical npr1 SA-signaling pathway. Transcriptomic and proteomic analyses revealed that major changes occurred in sid2 when cultivated under low-S, changes that were in good accordance with early senescence phenotype and showed the exacerbation of stress responses. The sid2 mutants displayed a lower sulfate uptake capacity when cultivated under low-S and lower S concentrations in their rosettes. Higher glutathione concentrations in sid2 rosettes under low-S were in good accordance with the higher abundance of proteins involved in glutathione and ascorbate redox metabolism. Amino acid and lipid metabolisms were also strongly modified in sid2 under low-S. Depletion of total fatty acids in sid2 under low-S was consistent with the fact that S-metabolism plays a central role in lipid synthesis. Altogether, our results show that functional ICS1 is important for plants to cope with S limiting conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Transferases Intramoleculares , Enxofre , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Enxofre/metabolismo , Mutação , Regulação da Expressão Gênica de Plantas , Ácido Salicílico/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Proteômica , Transcriptoma , Multiômica
4.
J Neurosci ; 44(13)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38267257

RESUMO

Visual and haptic perceptions of 3D shape are plagued by distortions, which are influenced by nonvisual factors, such as gravitational vestibular signals. Whether gravity acts directly on the visual or haptic systems or at a higher, modality-independent level of information processing remains unknown. To test these hypotheses, we examined visual and haptic 3D shape perception by asking male and female human subjects to perform a "squaring" task in upright and supine postures and in microgravity. Subjects adjusted one edge of a 3D object to match the length of another in each of the three canonical reference planes, and we recorded the matching errors to obtain a characterization of the perceived 3D shape. The results show opposing, body-centered patterns of errors for visual and haptic modalities, whose amplitudes are negatively correlated, suggesting that they arise in distinct, modality-specific representations that are nevertheless linked at some level. On the other hand, weightlessness significantly modulated both visual and haptic perceptual distortions in the same way, indicating a common, modality-independent origin for gravity's effects. Overall, our findings show a link between modality-specific visual and haptic perceptual distortions and demonstrate a role of gravity-related signals on a modality-independent internal representation of the body and peripersonal 3D space used to interpret incoming sensory inputs.


Assuntos
Percepção do Tato , Vestíbulo do Labirinto , Humanos , Masculino , Feminino , Percepção Visual , Tecnologia Háptica , Cognição , Percepção Espacial
5.
Front Physiol ; 14: 1303938, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074314

RESUMO

In the early 1970s, nine astronauts participated in missions to the Skylab space station. During two preflight testing sessions at the Naval Aerospace Medical Research Laboratory in Pensacola, the amplitudes of their ocular counter-rolling (OCR) during body tilts were assessed to determine if their vestibular functions were within normal ranges. We recently re-evaluated this data to determine asymmetry of each astronaut's OCR response and their OCR slope from sigmoid fits during static leftward and rightward body tilts, which we then compared with their Coriolis sickness susceptibility index (CSSI) on the ground, their motion sickness symptom scores during 0 g maneuvers in parabolic flight, and the severity of the symptoms of space motion sickness (SMS) they reported during their spaceflights. We arranged the astronauts in rank order for SMS severity based on the SMS symptoms they reported during spaceflight and the amount of anti-motion sickness medication they used. As previously reported, the OCR amplitudes of these astronauts were within the normal range. We determined that the OCR amplitudes were not correlated with SMS severity ranking, CSSI, or motion sickness symptoms experienced during parabolic flight. Indices of asymmetry in the OCR reflex were generally small and poorly correlated with SMS scores; however, the only subject with a high index of asymmetry also ranked highly for SMS. Although OCR slope, CSSI, and motion sickness symptoms induced during parabolic flight were each only moderately correlated with SMS severity ranking (rho = 0.41-0.44), a combined index that included all three parameters with equal weighting was significantly correlated with SMS severity ranking (rho = 0.71, p = 0.015). These results demonstrate the challenge of predicting an individual's susceptibility to SMS by measuring a single test parameter in a terrestrial environment and from a limited sample size.

6.
Front Plant Sci ; 14: 1288070, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053772

RESUMO

In mature symbiotic root nodules, differentiated rhizobia fix atmospheric dinitrogen and provide ammonium to fulfill the plant nitrogen (N) demand. The plant enables this process by providing photosynthates to the nodules. The symbiosis is adjusted to the whole plant N demand thanks to systemic N signaling controlling nodule development. Symbiotic plants under N deficit stimulate nodule expansion and activate nodule senescence under N satiety. Besides, nodules are highly sensitive to drought. Here, we used split-root systems to characterize the systemic responses of symbiotic plants to a localized osmotic stress. We showed that polyéthylène glycol (PEG) application rapidly inhibited the symbiotic dinitrogen fixation activity of nodules locally exposed to the treatment, resulting to the N limitation of the plant supplied exclusively by symbiotic dinitrogen fixation. The localized PEG treatment triggered systemic signaling stimulating nodule development in the distant untreated roots. This response was associated with an enhancement of the sucrose allocation. Our analyses showed that transcriptomic reprogramming associated with PEG and N deficit systemic signaling(s) shared many targets transcripts. Altogether, our study suggests that systemic N signaling is a component of the adaptation of the symbiotic plant to the local variations of its edaphic environment.

7.
Front Neurol ; 14: 1284029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965165

RESUMO

Introduction: This study compares the balance control and cognitive responses of subjects with bilateral vestibulopathy (BVP) to those of astronauts immediately after they return from long-duration spaceflight on board the International Space Station. Methods: Twenty-eight astronauts and thirty subjects with BVP performed five tests using the same procedures: sit-to-stand, walk-and-turn, tandem walk, duration judgment, and reaction time. Results: Compared to the astronauts' preflight responses, the BVP subjects' responses were impaired in all five tests. However, the BVP subjects' performance during the walk-and-turn and the tandem walk tests were comparable to the astronauts' performance on the day they returned from space. Moreover, the BVP subjects' time perception and reaction time were comparable to those of the astronauts during spaceflight. The BVP subjects performed the sit-to-stand test at a level that fell between the astronauts' performance on the day of landing and 1 day later. Discussion: These results indicate that the alterations in dynamic balance control, time perception, and reaction time that astronauts experience after spaceflight are likely driven by central vestibular adaptations. Vestibular and somatosensory training in orbit and vestibular rehabilitation after spaceflight could be effective countermeasures for mitigating these post-flight performance decrements.

8.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895051

RESUMO

The root-colonizing endophytic fungus Piriformospora indica promotes the root and shoot growth of its host plants. We show that the growth promotion of Arabidopsis thaliana leaves is abolished when the seedlings are grown on media with nitrogen (N) limitation. The fungus neither stimulated the total N content nor did it promote 15NO3- uptake from agar plates to the leaves of the host under N-sufficient or N-limiting conditions. However, when the roots were co-cultivated with 15N-labelled P. indica, more labels were detected in the leaves of N-starved host plants but not in plants supplied with sufficient N. Amino acid and primary metabolite profiles, as well as the expression analyses of N metabolite transporter genes suggest that the fungus alleviates the adaptation of its host from the N limitation condition. P. indica alters the expression of transporter genes, which participate in the relocation of NO3-, NH4+ and N metabolites from the roots to the leaves under N limitation. We propose that P. indica participates in the plant's metabolomic adaptation against N limitation by delivering reduced N metabolites to the host, thus alleviating metabolic N starvation responses and reprogramming the expression of N metabolism-related genes.


Assuntos
Arabidopsis , Basidiomycota , Arabidopsis/metabolismo , Plântula/metabolismo , Endófitos/metabolismo , Nitrogênio/metabolismo , Basidiomycota/fisiologia , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Plants (Basel) ; 12(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37375943

RESUMO

Our understanding of the long-term consequences of chronic ionising radiation for living organisms remains scarce. Modern molecular biology techniques are helpful tools for researching pollutant effects on biota. To reveal the molecular phenotype of plants growing under chronic radiation exposure, we sampled Vicia cracca L. plants in the Chernobyl exclusion zone and areas with normal radiation backgrounds. We performed a detailed analysis of soil and gene expression patterns and conducted coordinated multi-omics analyses of plant samples, including transcriptomics, proteomics, and metabolomics. Plants growing under chronic radiation exposure showed complex and multidirectional biological effects, including significant alterations in the metabolism and gene expression patterns of irradiated plants. We revealed profound changes in carbon metabolism, nitrogen reallocation, and photosynthesis. These plants showed signs of DNA damage, redox imbalance, and stress responses. The upregulation of histones, chaperones, peroxidases, and secondary metabolism was noted.

10.
J Vestib Res ; 33(5): 313-324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37248929

RESUMO

BACKGROUND: Coordination of motor activity is adapted to Earth's gravity (1 g). However, during space flight the gravity level changes from Earth gravity to hypergravity during launch, and to microgravity (0 g) in orbit. This transition between gravity levels may alter the coordination between eye and head movements in gaze performance. OBJECTIVE: We explored how weightlessness during space flight altered the astronauts' eye-head coordination (EHC) with respect to flight day and target eccentricity. METHODS: Thirty-four astronauts of 20 Space Shuttle missions had to acquire visual targets with angular offsets of 20°, 30°, and 49°. RESULTS: Measurements of eye, head, and gaze positions collected before and during flight days 1 to 15 indicated changes during target acquisition that varied as a function of flight days and target eccentricity. CONCLUSIONS: The in-flight alterations in EHC were presumably the result of a combination of several factors, including a transfer from allocentric to egocentric reference for spatial orientation in absence of a gravitational reference, the generation of slower head movements to attenuate motion sickness, and a decrease in smooth pursuit and vestibulo-ocular reflex performance. These results confirm that humans have several strategies for gaze behavior, between which they switch depending on the environmental conditions.


Assuntos
Voo Espacial , Ausência de Peso , Humanos , Astronautas , Astronave , Ausência de Peso/efeitos adversos , Reflexo Vestíbulo-Ocular
11.
Plant Physiol ; 192(4): 2943-2957, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37042394

RESUMO

In eukaryotes, a target of rapamycin (TOR) is a well-conserved kinase that controls cell metabolism and growth in response to nutrients and environmental factors. Nitrogen (N) is an essential element for plants, and TOR functions as a crucial N and amino acid sensor in animals and yeast. However, knowledge of the connections between TOR and the overall N metabolism and assimilation in plants is still limited. In this study, we investigated the regulation of TOR in Arabidopsis (Arabidopsis thaliana) by the N source as well as the impact of TOR deficiency on N metabolism. Inhibition of TOR globally decreased ammonium uptake while triggering a massive accumulation of amino acids, such as Gln, but also of polyamines. Consistently, TOR complex mutants were hypersensitive to Gln. We also showed that the glutamine synthetase inhibitor glufosinate abolishes Gln accumulation resulting from TOR inhibition and improves the growth of TOR complex mutants. These results suggest that a high level of Gln contributes to the reduction in plant growth resulting from TOR inhibition. Glutamine synthetase activity was reduced by TOR inhibition while the enzyme amount increased. In conclusion, our findings show that the TOR pathway is intimately connected to N metabolism and that a decrease in TOR activity results in glutamine synthetase-dependent Gln and amino acid accumulation.


Assuntos
Compostos de Amônio , Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Glutamina/metabolismo , Compostos de Amônio/metabolismo , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Sirolimo/farmacologia , Sirolimo/metabolismo , Aminoácidos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Saccharomyces cerevisiae/metabolismo , Plantas/metabolismo
12.
Front Physiol ; 14: 1141078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007995

RESUMO

We report a study on astronauts aimed at characterizing duration judgment before, during, and after long-duration stays on board the International Space Station. Ten astronauts and a control group of 15 healthy (non-astronaut) participants performed a duration reproduction task and a duration production task using a visual target duration ranging from 2 to 38 s. Participants also performed a reaction time test for assessing attention. Compared to control participants and preflight responses, the astronauts' reaction time increased during spaceflight. Also, during spaceflight, time intervals were under-produced while counting aloud and under-reproduced when there was a concurrent reading task. We hypothesize that time perception during spaceflight is altered by two mechanisms: (a) an acceleration of the internal clock through the changes in vestibular inputs in microgravity, and (b) difficulties in attention and working memory when a concurrent reading task is present. Prolonged isolation in confined areas, weightlessness, stress related to workload, and high-performance expectations could account for these cognitive impairments.

13.
Brain Sci ; 13(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36831732

RESUMO

BACKGROUND: A better understanding of how vestibular asymmetry manifests across tests is important due to its potential implications for balance dysfunction, motion sickness susceptibility, and adaptation to new environments. OBJECTIVE: We report the results of multiple tests for vestibular asymmetry in 32 healthy participants. METHODS: Asymmetry was measured using perceptual reports during unilateral centrifugation, oculomotor responses during visual alignment tasks, vestibulo-ocular reflex gain during head impulse tests, and body rotation during stepping tests. RESULTS: A significant correlation was observed between asymmetries of subjective visual vertical and verbal report during unilateral centrifugation. Another significant correlation was observed between the asymmetries of ocular alignment, vestibulo-ocular reflex gain, and body rotation. CONCLUSIONS: These data suggest that there are underlying vestibular asymmetries in healthy individuals that are consistent across various vestibular challenges. In addition, these findings have value in guiding test selection during experimental design for assessing vestibular asymmetry in healthy adults.

14.
Plant Cell ; 35(5): 1429-1454, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36752317

RESUMO

Nitrate signaling improves plant growth under limited nitrate availability and, hence, optimal resource use for crop production. Whereas several transcriptional regulators of nitrate signaling have been identified, including the Arabidopsis thaliana transcription factor NIN-LIKE PROTEIN7 (NLP7), additional regulators are expected to fine-tune this pivotal physiological response. Here, we characterized Arabidopsis NLP2 as a top-tier transcriptional regulator of the early nitrate response gene regulatory network. NLP2 interacts with NLP7 in vivo and shares key molecular features such as nitrate-dependent nuclear localization, DNA-binding motif, and some target genes with NLP7. Genetic, genomic, and metabolic approaches revealed a specific role for NLP2 in the nitrate-dependent regulation of carbon and energy-related processes that likely influence plant growth under distinct nitrogen environments. Our findings highlight the complementarity and specificity of NLP2 and NLP7 in orchestrating a multitiered nitrate regulatory network that links nitrate assimilation with carbon and energy metabolism for efficient nitrogen use and biomass production.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Nitratos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo
15.
NPJ Microgravity ; 9(1): 6, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658133

RESUMO

We perceive the environment through an elaborate mental representation based on a constant integration of sensory inputs, knowledge, and expectations. Previous studies of astronauts on board the International Space Station have shown that the mental representation of space, such as the perception of object size, distance, and depth, is altered in orbit. Because the mental representations of space and time have some overlap in neural networks, we hypothesized that perception of time would also be affected by spaceflight. Ten astronauts were tested before, during, and after a 6-8-month spaceflight. Temporal tasks included judging when one minute had passed and how long it had been since the start of the workday, lunch, docking of a vehicle, and a spacewalk. Compared to pre-flight estimates, there is a relative overestimation for the 1-min interval during the flight and a relative underestimation of intervals of hours in duration. However, the astronauts quite accurately estimated the number of days since vehicle dockings and spacewalks. Prolonged isolation in confined areas, stress related to workload, and high-performance expectations are potential factors contributing to altered time perception of daily events. However, reduced vestibular stimulations and slower motions in weightlessness, as well as constant references to their timeline and work schedule could also account for the change in the estimation of time by the astronauts in space.

16.
J Exp Bot ; 74(5): 1489-1500, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36528796

RESUMO

Proline is an amino acid that is degraded in the mitochondria by the sequential action of proline dehydrogenase (ProDH) and pyrroline-5-carboxylate dehydrogenase (P5CDH) to form glutamate. We investigated the phenotypes of Arabidopsis wild-type plants, the knockout prodh1 prodh2 double-mutant, and knockout p5cdh allelic mutants grown at low and high nitrate supplies. Surprisingly, only p5cdh presented lower seed yield and produced lighter seeds. Analyses of elements in above-ground organs revealed lower C concentrations in the p5cdh seeds. Determination of C, N, and dry matter partitioning among the above-ground organs revealed a major defect in stem-to-seed resource allocations in this mutant. Again surprisingly, defects in C, N, and biomass allocation to seeds dramatically increased in high-N conditions. 15N-labelling consistently confirmed the defect in N remobilization from the rosette and stem to seeds in p5cdh. Consequently, the p5cdh mutants produced morphologically abnormal, C-depleted seeds that displayed very low germination rates. The most striking result was the strong amplification of the N-remobilization defects in p5cdh under high nitrate supply, and interestingly this phenotype was not observed in the prodh1 prodh2 double-mutant irrespective of nitrate supply. This study reveals an essential role of P5CDH in carbon and nitrogen remobilization for reserve accumulation during seed development in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Plantas/metabolismo , Prolina Oxidase/genética , Prolina Oxidase/metabolismo , Sementes
17.
Plant Cell Environ ; 46(3): 901-917, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36583533

RESUMO

During leaf senescence, nitrogen is remobilized and carbon backbones are replenished by amino acid catabolism, with many of the key reactions occurring in mitochondria. The intermediate Δ1 -pyrroline-5-carboxylate (P5C) is common to some catabolic pathways, thus linking the metabolism of several amino acids, including proline and arginine. Specifically, mitochondrial proline catabolism involves sequential action of proline dehydrogenase (ProDH) and P5C dehydrogenase (P5CDH) to produce P5C and then glutamate. Arginine catabolism produces urea and ornithine, the latter in the presence of α-ketoglutarate being converted by ornithine δ-aminotransferase (OAT) into P5C and glutamate. Metabolic changes during dark-induced leaf senescence (DIS) were studied in Arabidopsis thaliana leaves of Col-0 and in prodh1prodh2, p5cdh and oat mutants. Progression of DIS was followed by measuring chlorophyll and proline contents for 5 days. Metabolomic profiling of 116 compounds revealed similar profiles of Col-0 and oat metabolism, distinct from prodh1prodh2 and p5cdh metabolism. Metabolic dynamics were accelerated in p5cdh by 1 day. Notably, more P5C and proline accumulated in p5cdh than in prodh1prodh2. ProDH1 enzymatic activity and protein amount were significantly down-regulated in p5cdh mutant at Day 4 of DIS. Mitochondrial P5C levels appeared critical in determining the flow through interconnected amino acid remobilization pathways to sustain senescence.


Assuntos
Arabidopsis , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Arginina/metabolismo , Glutamatos/metabolismo , Ornitina/metabolismo , Prolina/metabolismo , Prolina Oxidase/genética , Prolina Oxidase/metabolismo
18.
NPJ Microgravity ; 8(1): 57, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526672

RESUMO

Astronauts on the International Space Station are exposed to levels of atmospheric carbon dioxide (CO2) above typical terrestrial levels. We explored the possibility that increased levels of ambient CO2 further stimulate bone resorption during bed rest. We report here data from 2 ground-based spaceflight analog studies in which 12 male and 7 female subjects were placed in a strict 6° head-down tilt (HDT) position for either 30 days at 0.5% ambient CO2 or 60 days with nominal environmental exposure to CO2. Bone mineral density (BMD) and bone mineral content (BMC) were determined using dual-energy X-ray absorptiometry (DXA). Blood and urine were collected before and after HDT for biochemical analysis. No change was detected in either BMD or BMC, as expected given the study duration. Bone resorption markers increased after bed rest as expected; however, elevated CO2 had no additive effect. Elevated CO2 did not affect concentrations of minerals in serum and urine. Serum parathyroid hormone and 1,25-dihydroxyvitamin D were both reduced after bed rest, likely secondary to calcium efflux from bone. In summary, exposure to 0.5% CO2 for 30 days did not exacerbate the typical bone resorption response observed after HDT bed rest. Furthermore, results from these strict HDT studies were similar to data from previous bed rest studies, confirming that strict 30-60 days of HDT can be used to evaluate changes in bone metabolism. This is valuable in the continuing effort to develop and refine efficacious countermeasure protocols to mitigate bone loss during spaceflight in low-Earth orbit and beyond.

19.
Front Plant Sci ; 13: 1049323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570960

RESUMO

High seed quality is key to agricultural production, which is increasingly affected by climate change. We studied the effects of drought and elevated temperature during seed production on key seed quality traits of two genotypes of malting barley (Hordeum sativum L.). Plants of a "Hana-type" landrace (B1) were taller, flowered earlier and produced heavier, larger and more vigorous seeds that resisted ageing longer compared to a semi-dwarf breeding line (B2). Accordingly, a NAC domain-containing transcription factor (TF) associated with rapid response to environmental stimuli, and the TF ABI5, a key regulator of seed dormancy and vigour, were more abundant in B1 seeds. Drought significantly reduced seed yield in both genotypes, and elevated temperature reduced seed size. Genotype B2 showed partial thermodormancy that was alleviated by drought and elevated temperature. Metabolite profiling revealed clear differences between the embryos of B1 and B2. Drought, but not elevated temperature, affected the metabolism of amino acids, organic acids, osmolytes and nitrogen assimilation, in the seeds of both genotypes. Our study may support future breeding efforts to produce new lodging and drought resistant malting barleys without trade-offs that can occur in semi-dwarf varieties such as lower stress resistance and higher dormancy.

20.
Front Physiol ; 13: 1029161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505047

RESUMO

To properly assess the risk induced by vestibular and sensorimotor adaptation during exploration missions, we examined how long-duration stays on the International Space Station affect functional performance after gravity transitions. Mission-critical tasks that challenge the balance and the locomotion control systems were assessed: i.e., sit-to-stand, recovery-from-fall, tandem-walk, and walk-and-turn. We assessed 19 astronauts, including 7 first-time flyers and 12 experienced flyers, before their flight, a few hours after landing, and then 1 day and 6-11 days later. Results show that adaptation to long-term weightlessness causes deficits in functional performance immediately after landing that can last for up to 1 week. No differences were observed between first-time and experienced astronaut groups. These data suggest that additional sensorimotor-based countermeasures may be necessary to maintain functional performance at preflight levels when landing on planetary surfaces after a long period in weightlessness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA