Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266261

RESUMO

Ionizing radiation has become the most effective way to modify natural and synthetic polymers through crosslinking, degradation, and graft polymerization. This review will include an in-depth analysis of radiation chemistry mechanisms and the kinetics of the radiation-induced C-centered free radical, anion, and cation polymerization, and grafting. It also presents sections on radiation modifications of synthetic and natural polymers. For decades, low linear energy transfer (LLET) ionizing radiation, such as gamma rays, X-rays, and up to 10 MeV electron beams, has been the primary tool to produce many products through polymerization reactions. Photons and electrons interaction with polymers display various mechanisms. While the interactions of gamma ray and X-ray photons are mainly through the photoelectric effect, Compton scattering, and pair-production, the interactions of the high-energy electrons take place through coulombic interactions. Despite the type of radiation used on materials, photons or high energy electrons, in both cases ions and electrons are produced. The interactions between electrons and monomers takes place within less than a nanosecond. Depending on the dose rate (dose is defined as the absorbed radiation energy per unit mass), the kinetic chain length of the propagation can be controlled, hence allowing for some control over the degree of polymerization. When polymers are submitted to high-energy radiation in the bulk, contrasting behaviors are observed with a dominant effect of cross-linking or chain scission, depending on the chemical nature and physical characteristics of the material. Polymers in solution are subject to indirect effects resulting from the radiolysis of the medium. Likewise, for radiation-induced polymerization, depending on the dose rate, the free radicals generated on polymer chains can undergo various reactions, such as inter/intramolecular combination or inter/intramolecular disproportionation, b-scission. These reactions lead to structural or functional polymer modifications. In the presence of oxygen, playing on irradiation dose-rates, one can favor crosslinking reactions or promotes degradations through oxidations. The competition between the crosslinking reactions of C-centered free radicals and their reactions with oxygen is described through fundamental mechanism formalisms. The fundamentals of polymerization reactions are herein presented to meet industrial needs for various polymer materials produced or degraded by irradiation. Notably, the medical and industrial applications of polymers are endless and thus it is vital to investigate the effects of sterilization dose and dose rate on various polymers and copolymers with different molecular structures and morphologies. The presence or absence of various functional groups, degree of crystallinity, irradiation temperature, etc. all greatly affect the radiation chemistry of the irradiated polymers. Over the past decade, grafting new chemical functionalities on solid polymers by radiation-induced polymerization (also called RIG for Radiation-Induced Grafting) has been widely exploited to develop innovative materials in coherence with actual societal expectations. These novel materials respond not only to health emergencies but also to carbon-free energy needs (e.g., hydrogen fuel cells, piezoelectricity, etc.) and environmental concerns with the development of numerous specific adsorbents of chemical hazards and pollutants. The modification of polymers through RIG is durable as it covalently bonds the functional monomers. As radiation penetration depths can be varied, this technique can be used to modify polymer surface or bulk. The many parameters influencing RIG that control the yield of the grafting process are discussed in this review. These include monomer reactivity, irradiation dose, solvent, presence of inhibitor of homopolymerization, grafting temperature, etc. Today, the general knowledge of RIG can be applied to any solid polymer and may predict, to some extent, the grafting location. A special focus is on how ionizing radiation sources (ion and electron beams, UVs) may be chosen or mixed to combine both solid polymer nanostructuration and RIG. LLET ionizing radiation has also been extensively used to synthesize hydrogel and nanogel for drug delivery systems and other advanced applications. In particular, nanogels can either be produced by radiation-induced polymerization and simultaneous crosslinking of hydrophilic monomers in "nanocompartments", i.e., within the aqueous phase of inverse micelles, or by intramolecular crosslinking of suitable water-soluble polymers. The radiolytically produced oxidizing species from water, •OH radicals, can easily abstract H-atoms from the backbone of the dissolved polymers (or can add to the unsaturated bonds) leading to the formation of C-centered radicals. These C-centered free radicals can undergo two main competitive reactions; intramolecular and intermolecular crosslinking. When produced by electron beam irradiation, higher temperatures, dose rates within the pulse, and pulse repetition rates favour intramolecular crosslinking over intermolecular crosslinking, thus enabling a better control of particle size and size distribution. For other water-soluble biopolymers such as polysaccharides, proteins, DNA and RNA, the abstraction of H atoms or the addition to the unsaturation by •OH can lead to the direct scission of the backbone, double, or single strand breaks of these polymers.

2.
Sci Rep ; 6: 21116, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26883992

RESUMO

Ion beam shaping is a novel technique with which one can shape nano-structures that are embedded in a matrix, while simultaneously imposing their orientation in space. In this work, we demonstrate that the ion-shaping technique can be implemented successfully to engineer the morphology of hollow metallic spherical particles embedded within a silica matrix. The outer diameter of these particles ranges between 20 and 60 nm and their shell thickness between 3 and 14 nm. Samples have been irradiated with 74 MeV Kr ions at room temperature and for increasing fluences up to 3.8 × 10(14) cm(-2). In parallel, the experimental results have been theoretically simulated by using a three-dimensional code based on the thermal-spike model. These calculations show that the particles undergo a partial melting during the ion impact, and that the amount of molten phase is maximal when the impact is off-center, hitting only one hemisphere of the hollow nano-particle. We suggest a deformation scenario which differs from the one that is generally proposed for solid nano-particles. Finally, these functional materials can be seen as building blocks for the fabrication of nanodevices with really three-dimensional architecture.

3.
Nano Lett ; 13(5): 2053-7, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23586647

RESUMO

We present the first experimental imaging of the internal DW structure in 55 and 85 nm diameter Ni nanocylinders, using electron holography combined with micromagnetic calculations. We demonstrate the magnetic transition from a hybrid magnetic state with both vortex and transverse DW in 85 nm diameter Ni nanocylinders to a pure transverse wall in thinner nanowires. This is particularly important as DWs in nanocylinders are model systems to go beyond the classical Walker limit.

4.
Pharm Res ; 28(7): 1631-42, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21374102

RESUMO

PURPOSE: Angiogenesis plays a critical role in tumor growth. This phenomena is regulated by numerous mediators such as vascular endothelial growth factor (VEGF). CBO-P11, a cyclo-peptide, has proven to specifically bind to receptors of VEGF and may be used as targeting ligand for tumor angiogenesis. We herein report the design of novel nanoparticles conjugated to CBO-P11 in order to specifically target tumor site. METHODS: The conjugation of CBO-P11 on the surface of poly(vinylidene fluoride) (PVDF) nanoparticles was investigated using the copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition known as "click" reaction. CBO-P11 was modified with a near-infrared cyanine dye bearing an alkyne function, allowing both "click" coupling on azido-modified nanoparticles and fluorescence labelling. Each step of this nanodevice construction was judiciously performed in aqueous solution and successfully characterized. The cytotoxicity of nanoparticles was evaluated in human brain endothelial cell line and their affinity for VEGF receptors was determined via fluorescence-based uptake assays on porcine aortic endothelial cell line. RESULTS: Nanoparticles were found to be spherical, dense, monodisperse and stable. No cytotoxicity was observed after four days of incubation demonstrating the biocompatibility of nanoparticles. Fluorescence highlighted the specific interaction of these functionalized nanoparticles for VEGF receptors, suggesting that the targeting peptide bioactivity was retained. CONCLUSIONS: These results demonstrate the potential of these functionalized nanoparticles for targeting tumor angiogenesis and their possible use as multifunctional platform for cancer treatment if coupled with therapeutic agents.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Peptídeos/metabolismo , Polivinil/química , Receptores de Fatores de Crescimento do Endotélio Vascular/química , Animais , Linhagem Celular , Química Click , Fatores de Crescimento Endotelial/química , Humanos , Estrutura Molecular , Neovascularização Patológica/tratamento farmacológico , Peptídeos Cíclicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA