Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cells ; 11(7)2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35406691

RESUMO

Periodontal ligament stem cells (PDLCs) can be used as a valuable source in cell therapies to regenerate bone tissue. However, the potential therapeutic outcomes are unpredictable due to PDLCs' heterogeneity regarding the capacity for osteoblast differentiation and mineral nodules production. Here, we identify epigenetic (DNA (hydroxy)methylation), chromatin (ATAC-seq) and transcriptional (RNA-seq) differences between PDLCs presenting with low (l) and high (h) osteogenic potential. The primary cell populations were investigated at basal state (cultured in DMEM) and after 10 days of osteogenic stimulation (OM). At a basal state, the expression of transcription factors (TFs) and the presence of gene regulatory regions related to osteogenesis were detected in h-PDLCs in contrast to neuronal differentiation prevalent in l-PDLCs. These differences were also observed under stimulated conditions, with genes and biological processes associated with osteoblast phenotype activated more in h-PDLCs. Importantly, even after the induction, l-PDLCs showed hypermethylation and low expression of genes related to bone development. Furthermore, the analysis of TFs motifs combined with TFs expression suggested the relevance of SP1, SP7 and DLX4 regulation in h-PDLCs, while motifs for SIX and OLIG2 TFs were uniquely enriched in l-PDLCs. Additional analysis including a second l-PDLC population indicated that the high expression of OCT4, SIX3 and PPARG TFs could be predictive of low osteogenic commitment. In summary, several biological processes related to osteoblast commitment were activated in h-PDLCs from the onset, while l-PDLCs showed delay in the activation of the osteoblastic program, restricted by the persistent methylation of gene related to bone development. These processes are pre-determined by distinguishable epigenetic and transcriptional patterns, the recognition of which could help in selection of PDLCs with pre-osteoblastic phenotype.


Assuntos
Osteogênese , Ligamento Periodontal , Células Cultivadas , Cromatina/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Metilação , Osteogênese/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Cancer Lett ; 501: 172-186, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33359448

RESUMO

The DNA demethylating agent 5-aza-2'-deoxycytidine (DAC, decitabine) has anti-cancer therapeutic potential, but its clinical efficacy is hindered by DNA damage-related side effects and its use in solid tumours is debated. Here we describe how paracetamol augments the effects of DAC on cancer cell proliferation and differentiation, without enhancing DNA damage. Firstly, DAC specifically upregulates cyclooxygenase-2-prostaglandin E2 pathway, inadvertently providing cancer cells with survival potential, while the addition of paracetamol offsets this effect. Secondly, in the presence of paracetamol, DAC treatment leads to glutathione depletion and finally to accumulation of ROS and/or mitochondrial superoxide, both of which have the potential to restrict tumour growth. The benefits of combined treatment are demonstrated here in head and neck squamous cell carcinoma (HNSCC) and acute myeloid leukaemia cell lines, further corroborated in a HNSCC xenograft mouse model and through mining of publicly available DAC and paracetamol responses. The sensitizing effect of paracetamol supplementation is specific to DAC but not its analogue 5-azacitidine. In summary, the addition of paracetamol could allow for DAC dose reduction, widening its clinical usability and providing a strong rationale for consideration in cancer therapy.


Assuntos
Acetaminofen/administração & dosagem , Antimetabólitos Antineoplásicos/administração & dosagem , Decitabina/administração & dosagem , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Leucemia Mieloide/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Acetaminofen/farmacologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Decitabina/farmacologia , Sinergismo Farmacológico , Células HL-60 , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Leucemia Mieloide/metabolismo , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Superóxidos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Pineal Res ; 69(3): e12673, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32533862

RESUMO

The website and database https://snengs.nichd.nih.gov provides RNA sequencing data from multi-species analysis of the pineal glands from zebrafish (Danio rerio), chicken (White Leghorn), rat (Rattus novegicus), mouse (Mus musculus), rhesus macaque (Macaca mulatta), and human (Homo sapiens); in most cases, retinal data are also included along with results of the analysis of a mixture of RNA from tissues. Studies cover day and night conditions; in addition, a time series over multiple hours, a developmental time series and pharmacological experiments on rats are included. The data have been uniformly re-processed using the latest methods and assemblies to allow for comparisons between experiments and to reduce processing differences. The website presents search functionality, graphical representations, Excel tables, and track hubs of all data for detailed visualization in the UCSC Genome Browser. As more data are collected from investigators and improved genomes become available in the future, the website will be updated. This database is in the public domain and elements can be reproduced by citing the URL and this report. This effort makes the results of 21st century transcriptome profiling widely available in a user-friendly format that is expected to broadly influence pineal research.


Assuntos
Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica , Internet , Glândula Pineal/metabolismo , Retina/metabolismo , Animais , Galinhas , Humanos , Macaca mulatta , Camundongos , Ratos , Peixe-Zebra
4.
Am J Hum Genet ; 105(3): 640-657, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31402090

RESUMO

The identification of genetic variants implicated in human developmental disorders has been revolutionized by second-generation sequencing combined with international pooling of cases. Here, we describe seven individuals who have diverse yet overlapping developmental anomalies, and who all have de novo missense FBXW11 variants identified by whole exome or whole genome sequencing and not reported in the gnomAD database. Their phenotypes include striking neurodevelopmental, digital, jaw, and eye anomalies, and in one individual, features resembling Noonan syndrome, a condition caused by dysregulated RAS signaling. FBXW11 encodes an F-box protein, part of the Skp1-cullin-F-box (SCF) ubiquitin ligase complex, involved in ubiquitination and proteasomal degradation and thus fundamental to many protein regulatory processes. FBXW11 targets include ß-catenin and GLI transcription factors, key mediators of Wnt and Hh signaling, respectively, critical to digital, neurological, and eye development. Structural analyses indicate affected residues cluster at the surface of the loops of the substrate-binding domain of FBXW11, and the variants are predicted to destabilize the protein and/or its interactions. In situ hybridization studies on human and zebrafish embryonic tissues demonstrate FBXW11 is expressed in the developing eye, brain, mandibular processes, and limb buds or pectoral fins. Knockdown of the zebrafish FBXW11 orthologs fbxw11a and fbxw11b resulted in embryos with smaller, misshapen, and underdeveloped eyes and abnormal jaw and pectoral fin development. Our findings support the role of FBXW11 in multiple developmental processes, including those involving the brain, eye, digits, and jaw.


Assuntos
Encéfalo/anormalidades , Anormalidades do Olho/genética , Dedos/anormalidades , Mutação de Sentido Incorreto , Fenótipo , Ubiquitina-Proteína Ligases/genética , Proteínas Contendo Repetições de beta-Transducina/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino
5.
Endocrinology ; 159(3): 1469-1478, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29390136

RESUMO

Growth plate chondrocytes undergo sequential differentiation to form the resting zone, the proliferative zone (PZ), and the hypertrophic zone (HZ). The important role of microRNAs (miRNAs) in the growth plate was previously revealed by cartilage-specific ablation of Dicer, an enzyme essential for biogenesis of many miRNAs. To identify specific miRNAs that regulate differentiation of PZ chondrocytes to HZ chondrocytes, we microdissected individual growth plate zones from juvenile rats and performed miRNA profiling using a solution hybridization method and miRNA sequencing. Thirty-four miRNAs were differentially expressed between the PZ and the HZ, and we hypothesized that some of the miRNAs that are preferentially expressed in the PZ may promote proliferation and inhibit hypertrophic differentiation. Consistent with this hypothesis, transfection of inhibitors for four of these miRNAs (mir-369-3p, mir-374-5p, mir-379-5p, and mir-503-5p) decreased proliferation in primary epiphyseal chondrocytes. The inhibitors for three of these miRNAs (mir-374-5p, mir-379-5p, and mir-503-5p) also increased expression of multiple genes that are associated with chondrocyte hypertrophic differentiation. We next hypothesized that preferential expression of these miRNAs in the PZ is driven by the parathyroid hormone-related protein (PTHrP) concentration gradient across the growth plate. Consistent with this hypothesis, treatment of primary chondrocytes with a parathyroid hormone (PTH)/PTHrP receptor agonist, PTH1-34, increased expression of mir-374-5p, mir-379-5p, and mir-503-5p. Taken together, our findings suggest that the PTHrP concentration gradient across the growth plate induces differential expression of mir-374-5p, mir-379-5p, and mir-503-5p between the PZ and the HZ. In the PZ, the higher expression levels of these miRNAs promote proliferation and inhibit hypertrophic differentiation. In the HZ, downregulation of these miRNAs inhibits proliferation and promotes hypertrophic differentiation.


Assuntos
Diferenciação Celular , Proliferação de Células , Condrócitos/citologia , Lâmina de Crescimento/metabolismo , Hipertrofia/fisiopatologia , MicroRNAs/metabolismo , Animais , Ciclo Celular , Células Cultivadas , Condrócitos/metabolismo , Regulação da Expressão Gênica , Lâmina de Crescimento/crescimento & desenvolvimento , Humanos , Hipertrofia/genética , Hipertrofia/metabolismo , Masculino , MicroRNAs/genética , Ratos , Ratos Sprague-Dawley
6.
Cell Rep ; 12(5): 821-36, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26212328

RESUMO

Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect the epigenetic regulatory machinery and signaling molecules, leading to a block in hematopoietic differentiation. Constitutive signaling from mutated growth factor receptors is a major driver of leukemic growth, but how aberrant signaling affects the epigenome in AML is less understood. Furthermore, AML cells undergo extensive clonal evolution, and the mutations in signaling genes are often secondary events. To elucidate how chronic growth factor signaling alters the transcriptional network in AML, we performed a system-wide multi-omics study of primary cells from patients suffering from AML with internal tandem duplications in the FLT3 transmembrane domain (FLT3-ITD). This strategy revealed cooperation between the MAP kinase (MAPK) inducible transcription factor AP-1 and RUNX1 as a major driver of a common, FLT3-ITD-specific gene expression and chromatin signature, demonstrating a major impact of MAPK signaling pathways in shaping the epigenome of FLT3-ITD AML.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/enzimologia , Sistema de Sinalização das MAP Quinases , Mutação , Tirosina Quinase 3 Semelhante a fms/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Estrutura Terciária de Proteína , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética
7.
Mol Endocrinol ; 29(6): 921-32, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25866874

RESUMO

Body growth is rapid in infancy but subsequently slows and eventually ceases due to a progressive decline in cell proliferation that occurs simultaneously in multiple organs. We previously showed that this decline in proliferation is driven in part by postnatal down-regulation of a large set of growth-promoting genes in multiple organs. We hypothesized that this growth-limiting genetic program is orchestrated by microRNAs (miRNAs). Bioinformatic analysis identified target sequences of the miR-29 family of miRNAs to be overrepresented in age-down-regulated genes. Concomitantly, expression microarray analysis in mouse kidney and lung showed that all members of the miR-29 family, miR-29a, -b, and -c, were strongly up-regulated from 1 to 6 weeks of age. Real-time PCR confirmed that miR-29a, -b, and -c were up-regulated with age in liver, kidney, lung, and heart, and their expression levels were higher in hepatocytes isolated from 5-week-old mice than in hepatocytes from embryonic mouse liver at embryonic day 16.5. We next focused on 3 predicted miR-29 target genes (Igf1, Imp1, and Mest), all of which are growth-promoting. A 3'-untranslated region containing the predicted target sequences from each gene was placed individually in a luciferase reporter construct. Transfection of miR-29 mimics suppressed luciferase gene activity for all 3 genes, and this suppression was diminished by mutating the target sequences, suggesting that these genes are indeed regulated by miR-29. Taken together, the findings suggest that up-regulation of miR-29 during juvenile life drives the down-regulation of multiple growth-promoting genes, thus contributing to physiological slowing and eventual cessation of body growth.


Assuntos
Crescimento e Desenvolvimento/genética , MicroRNAs/genética , Regulação para Cima/genética , Regiões 3' não Traduzidas/genética , Envelhecimento/genética , Animais , Animais Recém-Nascidos , Sequência de Bases , Regulação para Baixo/genética , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Rim/metabolismo , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Dados de Sequência Molecular , Miocárdio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Brain Struct Funct ; 220(3): 1497-509, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24647753

RESUMO

Lhx9 is a member of the LIM homeobox gene family. It is expressed during mammalian embryogenesis in the brain including the pineal gland. Deletion of Lhx9 results in sterility due to failure of gonadal development. The current study was initiated to investigate Lhx9 biology in the pineal gland. Lhx9 is highly expressed in the developing pineal gland of the rat with transcript abundance peaking early in development; transcript levels decrease postnatally to nearly undetectable levels in the adult, a temporal pattern that is generally similar to that reported for Lhx9 expression in other brain regions. Studies with C57BL/6J Lhx9(-/-) mutant mice revealed marked alterations in brain and pineal development. Specifically, the superficial pineal gland is hypoplastic, being reduced to a small cluster of pinealocytes surrounded by meningeal and vascular tissue. The deep pineal gland and the pineal stalk are also reduced in size. Although the brains of neonatal Lhx9(-/-) mutant mice appear normal, severe hydrocephalus develops in about 70% of the Lhx9(-/-) mice at 5-8 weeks of age; these observations are the first to document that deletion of Lhx9 results in hydrocephalus and as such indicate that Lhx9 contributes to the maintenance of normal brain structure. Whereas hydrocephalus is absent in neonatal Lhx9(-/-)mutant mice, the neonatal pineal gland in these animals is hypoplastic. Accordingly, it appears that Lhx9 is essential for early development of the mammalian pineal gland and that this effect is not secondary to hydrocephalus.


Assuntos
Hidrocefalia/genética , Proteínas com Homeodomínio LIM/genética , Glândula Pineal/embriologia , Fatores de Transcrição/genética , Animais , Hidrocefalia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glândula Pineal/metabolismo , Glândula Pineal/patologia , Ratos , Ratos Sprague-Dawley
9.
J Pain ; 15(12): 1338-1359, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25281809

RESUMO

UNLABELLED: Disorders of pain neural systems are frequently chronic and, when recalcitrant to treatment, can severely degrade the quality of life. The pain pathway begins with sensory neurons in dorsal root or trigeminal ganglia, and the neuronal subpopulations that express the transient receptor potential cation channel, subfamily V, member 1 (TRPV1) ion channel transduce sensations of painful heat and inflammation and play a fundamental role in clinical pain arising from cancer and arthritis. In the present study, we elucidate the complete transcriptomes of neurons from the TRPV1 lineage and a non-TRPV1 neuroglial population in sensory ganglia through the combined application of next-gen deep RNA-Seq, genetic neuronal labeling with fluorescence-activated cell sorting, or neuron-selective chemoablation. RNA-Seq accurately quantitates gene expression, a difficult parameter to determine with most other methods, especially for very low and very high expressed genes. Differentially expressed genes are present at every level of cellular function from the nucleus to the plasma membrane. We identified many ligand receptor pairs in the TRPV1 population, suggesting that autonomous presynaptic regulation may be a major regulatory mechanism in nociceptive neurons. The data define, in a quantitative, cell population-specific fashion, the molecular signature of a distinct and clinically important group of pain-sensing neurons and provide an overall framework for understanding the transcriptome of TRPV1 nociceptive neurons. PERSPECTIVE: Next-gen RNA-Seq, combined with molecular genetics, provides a comprehensive and quantitative measurement of transcripts in TRPV1 lineage neurons and a contrasting transcriptome from non-TRPV1 neurons and cells. The transcriptome highlights previously unrecognized protein families, identifies multiple molecular circuits for excitatory or inhibitory autocrine and paracrine signaling, and suggests new combinatorial approaches to pain control.


Assuntos
Gânglios Espinais/metabolismo , Neurônios Aferentes/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Linhagem da Célula , Expressão Gênica , Perfilação da Expressão Gênica , Imuno-Histoquímica , Hibridização In Situ , Camundongos Transgênicos , Neuroglia/metabolismo , Dor/metabolismo , Ratos , Especificidade da Espécie , Canais de Cátion TRPV/genética , Transcriptoma , Nervo Trigêmeo/metabolismo
10.
PLoS One ; 9(2): e88217, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24558381

RESUMO

The purpose of this study was to expand our knowledge of small RNAs, which are known to function within protein complexes to modulate the transcriptional output of the cell. Here we describe two previously unrecognized, small RNAs, termed pY RNA1-s1 and pY RNA1-s2 (processed Y RNA1-stem -1 and -2), thereby expanding the list of known small RNAs. pY RNA1-s1 and pY RNA1-s2 were discovered by RNA sequencing and found to be 20-fold more abundant in the retina than in 14 other rat tissues. Retinal expression of pY RNAs is highly conserved, including expression in the human retina, and occurs in all retinal cell layers. Mass spectrometric analysis of pY RNA1-S2 binding proteins in retina indicates that pY RNA1-s2 selectively binds the nuclear matrix protein Matrin 3 (Matr3) and to a lesser degree to hnrpul1 (heterogeneous nuclear ribonucleoprotein U-like protein). In contrast, pY RNA1-s1 does not bind these proteins. Accordingly, the molecular mechanism of action of pY RNA1-s2 is likely be through an action involving Matr3; this 95 kDa protein has two RNA recognition motifs (RRMs) and is implicated in transcription and RNA-editing. The high affinity binding of pY RNA1-s2 to Matr3 is strongly dependent on the sequence of the RNA and both RRMs of Matr3. Related studies also indicate that elements outside of the RRM region contribute to binding specificity and that phosphorylation enhances pY RNA-s2/Matr3 binding. These observations are of significance because they reveal that a previously unrecognized small RNA, pY RNA1-s2, binds selectively to Matr3. Hypothetically, pY RNA1-S2 might act to modulate cellular function through this molecular mechanism. The retinal enrichment of pY RNA1-s2 provides reason to suspect that the pY RNA1-s2/Matr3 interaction could play a role in vision.


Assuntos
Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Pequeno RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Retina/metabolismo , Adulto , Motivos de Aminoácidos , Animais , Sequência de Bases , Bovinos , Galinhas , Feminino , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Macaca mulatta , Masculino , Espectrometria de Massas , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fosforilação , Glândula Pineal/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , Ratos Sprague-Dawley , Ovinos , Distribuição Tecidual
11.
Mol Endocrinol ; 27(11): 1840-55, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24085820

RESUMO

Hypothalamic GnRH is the primary regulator of reproduction in vertebrates, acting via the G protein-coupled GnRH receptor (GnRHR) in pituitary gonadotrophs to control synthesis and release of gonadotropins. To identify elements of the GnRHR-coupled gene network, GnRH was applied in a pulsatile manner for 6 hours to a mixed population of perifused pituitary cells from cycling females, mRNA was extracted, and RNA sequencing analysis was performed. This revealed 83 candidate-regulated genes, including a large number coding for secreted proteins. Most notably, GnRH induces a greater than 600-fold increase in expression of dentin matrix protein-1 (Dmp1), one of five members of the small integrin-binding ligand N-linked glycoprotein gene family. The Dmp1 response is mediated by the GnRHR, not elicited by other hypothalamic releasing factors, and is approximately 20-fold smaller in adult male pituitary cells. The sex-dependent Dmp1 response is established during the peripubertal period and independent of the developmental pattern of Gnrhr expression. In vitro, GnRH-induced expression of this gene is coupled with release of DMP1 in extracellular medium through the regulated secretory pathway. In vivo, pituitary Dmp1 expression in identified gonadotrophs is elevated after ovulation. Cell signaling studies revealed that the GnRH induction of Dmp1 is mediated by the protein kinase C signaling pathway and reflects opposing roles of ERK1/2 and p38 MAPK; in addition, the response is facilitated by progesterone. These results establish that DMP1 is a novel secretory protein of female rat gonadotrophs, the synthesis and release of which are controlled by the hypothalamus through the GnRHR signaling pathway. This advance raises intriguing questions about the intrapituitary and downstream effects of this new player in GnRH signaling.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Gonadotrofos/metabolismo , Hormônio Liberador de Gonadotropina/fisiologia , Fosfoproteínas/metabolismo , Ativação Transcricional , Animais , Células COS , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Estro/metabolismo , Proteínas da Matriz Extracelular/genética , Feminino , Sistema de Sinalização das MAP Quinases , Masculino , Fosfoproteínas/genética , Hipófise/citologia , Hipófise/metabolismo , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais , Transcriptoma
12.
Proc Natl Acad Sci U S A ; 109(33): 13319-24, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22864914

RESUMO

Long noncoding RNAs (lncRNAs) play a broad range of biological roles, including regulation of expression of genes and chromosomes. Here, we present evidence that lncRNAs are involved in vertebrate circadian biology. Differential night/day expression of 112 lncRNAs (0.3 to >50 kb) occurs in the rat pineal gland, which is the source of melatonin, the hormone of the night. Approximately one-half of these changes reflect nocturnal increases. Studies of eight lncRNAs with 2- to >100-fold daily rhythms indicate that, in most cases, the change results from neural stimulation from the central circadian oscillator in the suprachiasmatic nucleus (doubling time = 0.5-1.3 h). Light exposure at night rapidly reverses (halving time = 9-32 min) levels of some of these lncRNAs. Organ culture studies indicate that expression of these lncRNAs is regulated by norepinephrine acting through cAMP. These findings point to a dynamic role of lncRNAs in the circadian system.


Assuntos
Ritmo Circadiano/genética , Glândula Pineal/metabolismo , RNA não Traduzido/genética , Animais , Bucladesina/farmacologia , Ritmo Circadiano/efeitos dos fármacos , Biologia Computacional , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/metabolismo , Norepinefrina/farmacologia , Glândula Pineal/efeitos dos fármacos , RNA não Traduzido/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
13.
J Biol Chem ; 287(30): 25312-24, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22908386

RESUMO

MicroRNAs (miRNAs) play a broad range of roles in biological regulation. In this study, rat pineal miRNAs were profiled for the first time, and their importance was evaluated by focusing on the main function of the pineal gland, melatonin synthesis. Massively parallel sequencing and related methods revealed the miRNA population is dominated by a small group of miRNAs as follows: ~75% is accounted for by 15 miRNAs; miR-182 represents 28%. In addition to miR-182, miR-183 and miR-96 are also highly enriched in the pineal gland, a distinctive pattern also found in the retina. This effort also identified previously unrecognized miRNAs and other small noncoding RNAs. Pineal miRNAs do not exhibit a marked night/day difference in abundance with few exceptions (e.g. 2-fold night/day differences in the abundance of miR-96 and miR-182); this contrasts sharply with the dynamic 24-h pattern that characterizes the pineal transcriptome. During development, the abundance of most pineal gland-enriched miRNAs increases; however, there is a marked decrease in at least one, miR-483. miR-483 is a likely regulator of melatonin synthesis, based on the following. It inhibits melatonin synthesis by pinealocytes in culture; it acts via predicted binding sites in the 3"-UTR of arylalkylamine N-acetyltransferase (Aanat) mRNA, the penultimate enzyme in melatonin synthesis, and it exhibits a developmental profile opposite to that of Aanat transcripts. Additionally, a miR-483 targeted antagonist increased melatonin synthesis in neonatal pinealocytes. These observations support the hypothesis that miR-483 suppresses Aanat mRNA levels during development and that the developmental decrease in miR-483 abundance promotes melatonin synthesis.


Assuntos
Regiões 3' não Traduzidas/fisiologia , Arilalquilamina N-Acetiltransferase/biossíntese , Melatonina/biossíntese , MicroRNAs/metabolismo , Glândula Pineal/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Especificidade de Órgãos/fisiologia , Glândula Pineal/citologia , Glândula Pineal/crescimento & desenvolvimento , Ratos , Ratos Sprague-Dawley
14.
FEMS Microbiol Ecol ; 61(1): 65-73, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17466026

RESUMO

Acaryochloris marina strains have been isolated from several varied locations and habitats worldwide demonstrating a diverse and dynamic ecology. In this study, the whole cell photophysiologies of strain MBIC11017, originally isolated from a colonial ascidian, and the free-living epilithic strain CCMEE5410 are analyzed by absorbance and fluorescence spectroscopy, laser scanning confocal microscopy, sodium dodecyl sulfate polyacrylamide gel electrophoresis and subsequent protein analysis. We demonstrate pigment adaptation in MBIC11017 and CCMEE5410 under different light regimes. We show that the higher the incident growth light intensity for both strains, the greater the decrease in their chlorophyll d content. However, the strain MBIC11017 loses its phycobiliproteins relative to its chlorophyll d content when grown at light intensities of 40 microE m(-2) s(-1) without shaking and 100 microE m(-2) s(-1) with shaking. We also conclude that phycobiliproteins are absent in the free-living strain CCMEE5410.


Assuntos
Adaptação Fisiológica , Clorofila/metabolismo , Cianobactérias/efeitos da radiação , Fotossíntese/efeitos da radiação , Ficobiliproteínas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Clorofila/efeitos da radiação , Cianobactérias/metabolismo , Cianobactérias/fisiologia , Ecossistema , Microscopia Confocal , Dados de Sequência Molecular , Fotossíntese/fisiologia , Ficobiliproteínas/efeitos da radiação , Espectrometria de Fluorescência , Espectrofotometria , Simbiose/fisiologia
15.
FEBS J ; 272(15): 3767-76, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16045749

RESUMO

The breakpoint cluster region protein, BCR, has protein kinase activity that can auto- and trans-phosphorylate serine, threonine and tyrosine residues. BCR has been implicated in chronic myelogenous leukaemia as well as important signalling pathways, and as such its interaction with 14-3-3 is of major interest. 14-3-3tau and zeta isoforms have been shown previously to be phosphorylated in vitro and in vivo by BCR kinase on serine and threonine residue(s) but site(s) were not determined. Phosphorylation of 14-3-3 isoforms at distinct sites is an important mode of regulation that negatively affects interaction with Raf kinase and Bax, and potentially influences the dimerization of 14-3-3. In this study we have further characterized the BCR-14-3-3 interaction and have identified the site phosphorylated by BCR. We show here that BCR interacts with at least five isoforms of 14-3-3 in vivo and phosphorylates 14-3-3tau on Ser233 and to a lesser extent 14-3-3zeta on Thr233. We have previously shown that these two isoforms are also phosphorylated at this site by casein kinase 1, which, in contrast to BCR, preferentially phosphorylates 14-3-3zeta.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Substituição de Aminoácidos , Animais , Células COS , Caseína Quinase I/metabolismo , Linhagem Celular Transformada , Chlorocebus aethiops , Humanos , Isoenzimas/metabolismo , Mutação , Fosforilação , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcr
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA