RESUMO
Polymer electrolytes exhibit higher energy density and improved safety in lithium-ion batteries relative to traditionally used liquid electrolytes but are currently limited by their lower electrochemical performance. Aiming to access polymer electrolytes with competitive electrochemical properties, we developed the anionic ring-opening polymerization (AROP) of cyclic silaketals to synthesize amorphous silicon-containing polyether-based electrolytes with varying substituent bulk of the general formula [OSi(R)2(CH2CH2O)2]n (R = alkyl, phenyl). As opposed to previously reported uncontrolled polycondensation routes toward low molecular weight polysilaketals, AROP allows access to targeted molecular weights above the entanglement threshold of the polymers. The polysilaketal with the lowest steric bulk (P(OSiMe,Me-2EO)) exceeds the conductivity of poly(ethylene oxide) (PEO), a leading polymer electrolyte. To the best of our knowledge, this is the first solid polymer electrolyte to achieve this benchmark. Steric bulk in polysilaketals was found to impart stability and two bulkier polysilaketals, P(OSiEt,Et-2EO) and P(OSiMe,Ph-2EO), exhibited higher current fractions than PEO over a wide range of salt loadings. Moreover, the efficacy of P(OSiEt,Et-2EO) was competitive with that of PEO. Taken together, the tunable and competitive electrochemical properties of polysilaketals validate the systematic incorporation of silyl groups as a strategy to access high performance polymer electrolytes.
RESUMO
Polymer stereocomplex formation represents a promising research area as it can improve thermal and mechanical properties of co-crystallized polymer strands of opposite chirality. Polymers that form stereocomplexes commonly feature high stereoregularity and usually require sourcing from enantiopure monomer building blocks. Herein, we report the in situ polyether stereo-complex formation from racemic epoxide monomers, i.e., substituted methyl phenyl glycidyl ethers. The bio-renewable glycidyl ethers were explored in both enantio- and isoselective ring-opening polymerizations (ROPs), resulting in isotactic poly(phenyl glycidyl ether). While the enantio-selective ROP selectively resolves a single enantiomeric, isotactic polyether stereoisomer ([mm]P ≥ 78%), the isoselective ROP leads to the concurrent formation of both isotactic (R)- and (S)-poly(phenyl glycidyl ether) stereoisomers ([mm]P ≥ 92%) and thus results directly in a stereoisomer blend, which forms a stereocomplex. This is one of only a few polymer stereocomplexes generated directly during polymerization from a racemic monomer mixture. Stereo-complexes of the different poly(phenyl glycidyl ether)s show an increase in melting temperature of up to 76 °C, relative to the enantiopure parent polymers. The position of the methyl group at the phenyl ring determines both stereocomplex formation and the thermal properties of the resulting materials.