Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Arch Environ Contam Toxicol ; 85(2): 105-118, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558810

RESUMO

Parabens are ubiquitous, being found in surface waters around the world. Although little is known about the release of paraben transformation products and fate of transformation products in surface water. This study evaluates both parabens and paraben transformation products in the Brazos River upstream and downstream of a wastewater facility located in Waco, Texas. Concentrations of thirteen compounds were reported in this study, five parent parabens and eight paraben disinfection by-products. Analyte concentrations were spatially evaluated to determine if release of wastewater effluent affects their concentrations in the river. Two Brazos River tributaries were also sampled to determine if they released parabens and related compounds to the Brazos. Sampling occurred weekly for one year with at least 40 samples collected at each site. Analyses were completed for both yearly and seasonal data. Sites downstream of wastewater treatment outfalls had lower concentrations of methyl paraben during the yearly analysis and across multiple seasons in the seasonal analysis with average yearly annual methyl paraben concentrations decreasing from 0.83 ng/L at site 3 to 0.09 ng/L at site 4. Para-hydroxybenzoic acid was the compound present in greatest concentration at most sites across most seasons, with the highest average annual concentration of 10.30 ng/L at site 2. Spatial changes in para-hydroxybenzoic acid varied by season, with seasonal trends only identifiable after normalization by flow. Dichlorinated paraben concentrations increased in the river at sites downstream of wastewater treatment with a yearly average dichlorinated methyl paraben concentration of 0.490 ng/L at site 3 to 1.53 at site 4, just downstream of the major wastewater treatment plant. Concentration increases indicate that wastewater effluent contains sufficiently high dichlorinated paraben concentrations to effect concentrations downstream of effluent discharges. Dichlorinated species also persisted in the environment, with no significant decreases at sites further downstream during any season with an annual average dichlorinated methyl paraben concentration of 1.23 ng/L at site 6. Methyl paraben concentrations decreased at the site furthest downstream to a concentration of 0.081 ng/L, while dichlorinated methyl paraben concentrations remained stable with a concentration of 1.10 ng/L at the site furthest downstream. Due to the dichlorinated species being released in higher concentrations in effluent than parents and being more resistant to degradation, the dichlorinated parabens are more likely to be environmentally relevant than are parent parabens.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Parabenos/análise , Texas , Poluentes Químicos da Água/análise
2.
Water Res ; 235: 119798, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36958223

RESUMO

Parabens are commonly used preservatives that are weakly estrogenic. Wastewater effluent is the greatest contributor to the spread of parabens into rivers and other surface water. While previous studies indicate parabens are well removed in wastewater treatment by way of transformation, not much is known about the paraben transformation products. This study evaluates paraben transformation and release at two different wastewater treatment plants in Texas. Paraben concentrations were quantified for influent and effluent by season and by year at both treatment plants. Both seasonal and annual transformation rates were compared between the two wastewater treatment plants. Compounds were compared to evaluate differences in transformation rates and to determine if decreases in parent product concentrations are correlated to changes in transformation product concentrations. The study took place over one year and evaluated each season. Spring had higher influent concentrations and transformation rates at treatment plant 1, while summer had higher influent concentrations and transformation rates at treatment plant 2. PHBA was present in greatest amounts in influent and effluent at both sites with average yearly influent concentrations at 223.9 pM at plant 1 and 211.4 pM at plant 2. Transformation rates of parent parabens were greater at plant 1 with concentration of all three shorter chained parabens decreasing by over 50% after treatment. Formation of dichlorinated transformation products were greater at plant 1 with concentrations of Cl2MeP increasing by 1200% after treatment and Cl2EtP increasing by 940%. While shorter chained parabens generally had a greater transformation rate, no correlations were found between decreases in methyl and ethyl parabens and the formation of their respective dichlorinated transformation products.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Parabenos , Estações do Ano , Texas , Poluentes Químicos da Água/análise
3.
Environ Toxicol Chem ; 42(5): 1109-1123, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36866800

RESUMO

The present study determined if green sea turtles (Chelonia mydas) in Kailua Bay, Oahu, in the Hawaiian Islands have elevated blood and scute lead (Pb), arsenic (As), and antimony (Sb) concentrations resulting from lead deposition at a historic skeet shooting range. Blood and scute samples were collected and analyzed for Pb, As, and Sb via inductively coupled plasma-mass spectrometry. Prey, water, and sediment samples were also analyzed. Turtle samples in Kailua Bay (45) have blood Pb concentrations (328 ± 195 ng/g) greater than a reference population (Howick Group of Islands, 29.2 ± 17.1 ng/g). Compared with other green turtle populations, only turtles in Oman, Brazil, and San Diego, CA have blood Pb concentrations greater than turtles in Kailua Bay. The estimated daily exposure of Pb from algae sources in Kailua Bay (0.12 mg/kg/day) was significantly lower than the no observed adverse effect level (100 mg/kg) of red-eared slider turtles. However, the chronic effects of Pb on sea turtles is poorly understood and continued monitoring of this population will increase our understanding of the Pb and As loads of sea turtles in Kailua Bay. Environ Toxicol Chem 2023;42:1109-1123. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Arsênio , Metais Pesados , Tartarugas , Poluentes Químicos da Água , Animais , Havaí , Chumbo/análise , Poluentes Químicos da Água/análise , Metais Pesados/análise , Arsênio/análise
4.
Sci Total Environ ; 841: 156699, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35710009

RESUMO

Urban-living wildlife can be exposed to metal contaminants dispersed into the environment through industrial, residential, and agricultural applications. Metal exposure carries lethal and sublethal consequences for animals; in particular, heavy metals (e.g. arsenic, lead, mercury) can damage organs and act as carcinogens. Many bat species reside and forage in human-modified habitats and could be exposed to contaminants in air, water, and food. We quantified metal concentrations in fur samples from three flying fox species (Pteropus fruit bats) captured at eight sites in eastern Australia. For subsets of bats, we assessed ectoparasite burden, haemoparasite infection, and viral infection, and performed white blood cell differential counts. We examined relationships among metal concentrations, environmental predictors (season, land use surrounding capture site), and individual predictors (species, sex, age, body condition, parasitism, neutrophil:lymphocyte ratio). As expected, bats captured at sites with greater human impact had higher metal loads. At one site with seasonal sampling, bats had higher metal concentrations in winter than in summer, possibly owing to changes in food availability and foraging. Relationships between ectoparasites and metal concentrations were mixed, suggesting multiple causal mechanisms. There was no association between overall metal load and neutrophil:lymphocyte ratio, but mercury concentrations were positively correlated with this ratio, which is associated with stress in other vertebrate taxa. Comparison of our findings to those of previous flying fox studies revealed potentially harmful levels of several metals; in particular, endangered spectacled flying foxes (P. conspicillatus) exhibited high concentrations of cadmium and lead. Because some bats harbor pathogens transmissible to humans and animals, future research should explore interactions between metal exposure, immunity, and infection to assess consequences for bat and human health.


Assuntos
Quirópteros , Mercúrio , Animais , Austrália , Metais , Estações do Ano
5.
Sci Total Environ ; 838(Pt 2): 155861, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35568171

RESUMO

The population of Texas has increased rapidly in the past decade. The San Antonio Field Study (SAFS) was designed to investigate ozone (O3) production and precursors in this rapidly changing, sprawling metropolitan area. There are still many questions regarding the sources and chemistry of volatile organic compounds (VOCs) in urban areas like San Antonio which are affected by a complex mixture of industry, traffic, biogenic sources and transported pollutants. The goal of the SAFS campaign in May 2017 was to measure inorganic trace gases, VOCs, methane (CH4), and ethane (C2H6). The SAFS field design included two sites to better assess air quality across the metro area: an urban site (Traveler's World; TW) and a downwind/suburban site (University of Texas at San Antonio; UTSA). The results indicated that acetone (2.52 ± 1.17 and 2.39 ± 1.27 ppbv), acetaldehyde (1.45 ± 1.02 and 0.93 ± 0.45 ppbv) and isoprene (0.64 ± 0.49 and 1.21 ± 0.85 ppbv; TW and UTSA, respectively) were the VOCs with the highest concentrations. Additionally, positive matrix factorization showed three dominant factors of VOC emissions: biogenic, aged urban mixed source, and acetone. Methyl vinyl ketone and methacrolein (MVK + MACR) exhibited contributions from both secondary photooxidation of isoprene and direct emissions from traffic. The C2H6:CH4 demonstrated potential influence of oil and gas activities in San Antonio. Moreover, the high O3 days during the campaign were in the NOx-limited O3 formation regime and were preceded by evening peaks in select VOCs, NOx and CO. Overall, quantification of the concentration and trends of VOCs and trace gases in a major city in Texas offers vital information for general air quality management and supports strategies for reducing O3 pollution. The SAFS campaign VOC results will also add to the growing body of literature on urban sources and concentrations of VOCs in major urban areas.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Acetona , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Ozônio/análise , Texas , Compostos Orgânicos Voláteis/análise
6.
Water Environ Res ; 94(4): e10705, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35415920

RESUMO

Parabens are a class of compounds often used as preservatives in personal care products, pharmaceuticals, and food. They have received attention recently due to findings that demonstrate estrogenic impacts and other adverse effects of parabens. Release into wastewater effluent is considered a major contributor to the spread of parabens into surface water. Current regulations in areas such as Japan, Europe, and Southeast Asia limit the concentrations of parabens that can be used in formulations but do not address concentrations discharged into waterbodies. Recent studies suggest that parent parabens are effectively eliminated by transformation during the wastewater treatment processes. Common tertiary treatments include ultrafiltration, chlorination, UV disinfection and ozonation. Ultrafiltration is used to remove solids before a disinfection step. Of the disinfection steps, ozonation is often the most effective at removing parabens. Not much is known about the toxicities of paraben transformation products. Of the transformation products, chlorinated parabens and PHBA are the most studied. Previous studies have shown that chlorinated parabens have greatly reduced estrogen agonistic activity when compared with the activity of parents. However, more recent studies have found that halogenated parabens actually have estrogen antagonistic activity. Further research involving chlorinated parabens could include other toxic endpoints. No known studies have evaluated adverse effects of oxygenated parabens. Parabens can interact with chlorine residues in the environment and form chlorinated products, this will occur at a faster rate during chlorination. Ozonation will oxidize parabens and UV disinfection can both oxidize and halogenate parabens. All studies determining potential transformation products have been done in laboratory settings or specific conditions. Further research is needed to determine if these transformations occur in situ. PRACTITIONER POINTS: Common chemical processes utilized by wastewater treatment facilities are effective at transforming parabens. Paraben transformation products are released in greater concentration in effluent than parent paraben compounds. Halogenated transformation products have been identified as estrogen receptor antagonists.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Estrogênios , Parabenos/análise , Parabenos/química , Parabenos/toxicidade , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Sci Total Environ ; 774: 145620, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33609822

RESUMO

The increasing arsenic (As) concentration in agriculture media poses increasing risks to both environment and human health. Arsenic mobility determines its bioavailability and entry into the food chain. Nanoparticle application may help to control As mobility in crop cultivation media, and thus decreasing As bioavailability for plants. This research studied the adsorption kinetics of As(V) on copper oxide nanoparticles (nCuO) and nCuO dissolution in a hydroponic solution, and the effects of nCuO on As mobility in a greenhouse system exposed to As(V) addition of 10 mg/kg and nCuO at 0.1-100 mg/L for a life-cycle growth of rice. Arsenic adsorption was dependent on both the total mass and the concentration of nCuO as well as the initial concentration of As(V), while nCuO dissolution was mainly dependent on nCuO concentration regardless of As(V). Arsenic in the simulated paddy was quickly mobilized from soil to aqueous phase during week 1, and further interacted with components in water phase, sediment-water interfacial transition and rice plants. Copper (Cu) and As speciation in the soil were observed by X-Ray Absorption Near Edge Spectrometry. Dissolved Cu was complexed with organic ligands. As(V) was adsorbed to kaolinite, or reduced to As(III) and adsorbed to ferrihydrite. Percent As removal from water phase in the growth container was determined by both nCuO application and As(V) initial concentration. Based on our previous finding that As accumulation in rice grains was significantly decreased by nCuO at 50 mg/L and the results of this study on As adsorption capacity of nCuO and As removal from water due to nCuO application, nCuO at 50 mg/L was proposed to be an appropriate application in rice paddy to immobilize As. Further research is needed in actual agriculture to verify the appropriate nCuO application and get an integrated beneficial effect for rice plants and humans.


Assuntos
Arsênio , Nanopartículas , Oryza , Poluentes do Solo , Arsênio/análise , Cobre , Humanos , Óxidos , Solo
8.
Environ Toxicol Chem ; 40(1): 208-218, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33103806

RESUMO

Sea turtles are exposed to trace elements through water, sediment, and food. Exposure to these elements has been shown to decrease immune function, impair growth, and decrease reproductive output in wildlife. The present study compares trace element concentrations in green turtles in captivity at Sea Life Park Hawaii (n = 6) to wild green turtles in Kapoho Bay, Hawaii, USA (n = 5-7). Blood and scute samples were collected and analyzed for 11 elements via inductively coupled plasma-mass spectrometry (ICP-MS). Selenium was significantly greater (p < 0.05) in the blood of captive turtles compared with wild turtles, whereas V, Ni, and Pb were significantly greater in the blood of wild turtles. In scute, V, Cu, Se, and Cr were significantly greater in captive turtles, whereas As was significantly greater in wild turtles. Pelleted food fed to the captive turtles and representative samples of the wild turtle diet were analyzed via ICP-MS to calculate trophic transfer factors and daily intake values. Wild turtles had greater estimated daily intake than captive turtles for all elements except Cu and Se. Because captive turtles are fed a diet very different from that of their wild counterparts, captive turtles do not represent control or reference samples for chemical exposure studies in wild turtles. No toxic thresholds are known for sea turtles, but rehabilitation and managed care facilities should monitor sea turtle elemental concentrations to ensure the animals' health. Environ Toxicol Chem 2021;40:208-218. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Selênio , Oligoelementos , Tartarugas , Poluentes Químicos da Água , Animais , Animais Selvagens , Havaí , Oligoelementos/análise , Poluentes Químicos da Água/análise
9.
Environ Int ; 138: 105641, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32203804

RESUMO

Disinfection is an essential process of drinking water treatment to eliminate harmful pathogens, but it generates potentially toxic disinfection byproducts (DBPs). Ferrate (FeO42-, Fe(VI)) was used to pre-oxidize natural organic matter (NOM, the precursor of DBPs) in source water to control DBP formation in subsequent chlorine or chloramine disinfection. Currently, it is unclear how Fe(VI) changes the structure of NOM, and no information details the effect of Fe(VI) pretreatment on the aromatic DBPs or the speciation of overall DBPs generated in subsequent disinfection of drinking water. In the present paper, Fe(VI) was applied to pretreat simulated source water samples at a Fe(VI) to dissolved organic carbon mole ratio of 1:1 at pH 8.0. 13C nuclear magnetic resonance spectroscopy was newly employed to characterize NOM in simulated source waters with and without Fe(VI) treatment, and it was demonstrated that Fe(VI) converted unsaturated aromatic C functional groups in NOM to saturated aliphatic ones. High-resolution mass spectrometry (HRMS) and high performance liquid chromatography/triple quadrupole MS were applied to analyze the DBPs generated in chlorination and chloramination of the source waters with and without Fe(VI) pretreatment. It was confirmed that Fe(VI) pretreatment followed by chlorination (or chloramination), generated DBPs containing less unsaturated, halogenated, and aromatic moieties than chlorination (or chloramination) without pretreatment by Fe(VI). Finally, the cytotoxicity of disinfected drinking water samples were assessed with the human epithelial colorectal adenocarcinoma Caco-2 cell line (a model of the intestinal barrier for ingested toxicants), and the results show that Fe(VI) pretreatment detoxified the chlorinated and chloraminated drinking waters.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Células CACO-2 , Desinfecção , Halogenação , Humanos , Ferro , Poluentes Químicos da Água/análise
10.
Environ Toxicol Chem ; 38(8): 1606-1624, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31361364

RESUMO

Anticipating, identifying, and prioritizing strategic needs represent essential activities by research organizations. Decided benefits emerge when these pursuits engage globally important environment and health goals, including the United Nations Sustainable Development Goals. To this end, horizon scanning efforts can facilitate identification of specific research needs to address grand challenges. We report and discuss 40 priority research questions following engagement of scientists and engineers in North America. These timely questions identify the importance of stimulating innovation and developing new methods, tools, and concepts in environmental chemistry and toxicology to improve assessment and management of chemical contaminants and other diverse environmental stressors. Grand challenges to achieving sustainable management of the environment are becoming increasingly complex and structured by global megatrends, which collectively challenge existing sustainable environmental quality efforts. Transdisciplinary, systems-based approaches will be required to define and avoid adverse biological effects across temporal and spatial gradients. Similarly, coordinated research activities among organizations within and among countries are necessary to address the priority research needs reported here. Acquiring answers to these 40 research questions will not be trivial, but doing so promises to advance sustainable environmental quality in the 21st century. Environ Toxicol Chem 2019;38:1606-1624. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Conservação dos Recursos Naturais , Ecotoxicologia , Pesquisa , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Humanos , América do Norte , Desenvolvimento Sustentável
11.
Environ Pollut ; 252(Pt A): 784-793, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31200204

RESUMO

Dust samples were collected from four indoor environments, including childcare facilities, houses, hair salons, and a research facility from the USA and were analyzed for brominated compounds using full scan liquid chromatography high-resolution mass spectrometry. A total of 240 brominated compounds were detected in these dust samples, and elemental formulas were predicted for 120 more abundant ions. In addition to commonly detected brominated flame retardants (BFRs), nitrogen-containing brominated azo dyes (BADs) were among the most frequently detected and abundant. Specifically, greater abundances of BADs were detected in indoor dusts from daycares and salons compared to houses and the research facility. Using authentic standards, a quantitative method was established for two BADs (DB373: Disperse Blue 373 and DV93: Disperse Violet 93) and 2-bromo-4,6-dinitroaniline, a commonly used precursor in azo dye production, in indoor dust. Generally, greater concentrations of DB373 (≤3850 ng/g) and DV93 (≤1190 ng/g) were observed in indoor dust from daycares highlighting children as a susceptible population to potential health risk from exposure to BADs. These data are important because, to date, targeted analysis of brominated compounds in indoor environments has focused mainly on BFRs and appears to underestimate the total amount of brominated compounds.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Compostos de Anilina/análise , Compostos Azo/análise , Poeira/análise , Retardadores de Chama/análise , Hidrocarbonetos Bromados/análise , Criança , Creches , Cromatografia Líquida , Éteres Difenil Halogenados/análise , Humanos , Nitrogênio/análise , Espectrometria de Massas em Tandem
12.
Environ Toxicol Chem ; 38(9): 1978-1987, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31162729

RESUMO

Offspring generation (F1) rice (Oryza sativa japonica Koshihikari) seed germination and seedling growth tests were conducted for 18 d to investigate intergenerational effects of arsenic (As) and copper oxide nanoparticles (nCuO), with seeds harvested from a life cycle study exposed to As (0 and 10 mg/kg) and nCuO (0, 0.1, 1.0, 10, 50, and 100 mg/L). Seed germination and seedling growth of F1 plants were influenced by treatments experienced by parent generation (F0) plants (p < 0.05). Seeds produced from plants in F0 treatment with nCuO 50 mg/L had the lowest germination percentage and shortest seedling shoot length and root length in F1 control (F1C) and As at 10 mg/kg (F1As) alone treatments (p < 0.05). The shoot length and root length were decreased, whereas the number of root branches was increased in F1As treatment compared with F1C (p < 0.001). Interaction of As and nCuO also caused differential seed germination and seedling growth at various nCuO concentrations in quasi-F0 treatment (seeds receiving the same exposure as F0 plants; p < 0.05). Copper and As uptake in F1C seedlings were not affected by seeds' F0 exposure; this indicated that the transgenerational effects on rice seedling growth were not dependent on total Cu or As uptake in seedlings. The enhanced effects on seedlings from quasi-F0 treatment were influenced by additional exposure to nCuO and As that also interacted to affect Cu and As uptake in seedlings. Environ Toxicol Chem 2019;38:1978-1987. © 2019 SETAC.


Assuntos
Arsênio/toxicidade , Germinação/efeitos dos fármacos , Nanopartículas/toxicidade , Oryza/crescimento & desenvolvimento , Arsênio/análise , Cobre/análise , Cobre/química , Espectrometria de Massas , Nanopartículas/química , Oryza/química , Oryza/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sementes/química , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento
13.
Integr Environ Assess Manag ; 15(5): 714-725, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31144769

RESUMO

Pesticide regulation requires regulatory authorities to assess the potential ecological risk of pesticides submitted for registration, and most risk assessment schemes use a tiered testing and assessment approach. Standardized ecotoxicity tests, environmental fate studies, and exposure models are used at lower tiers and follow well-defined methods for assessing risk. If a lower tier assessment indicates that the pesticide may pose an ecological risk, higher tier studies using more environmentally realistic conditions or assumptions can be performed to refine the risk assessment and inform risk management options. However, there is limited guidance in the United States on options to refine an assessment and how the data will be incorporated into the risk assessment and risk management processes. To overcome challenges to incorporation of higher tier data into ecological risk assessments and risk management of pesticides, a workshop was held in Raleigh, North Carolina. Attendees included representatives from the United States Environmental Protection Agency, United States Department of Agriculture, National Oceanic and Atmospheric Administration, universities, commodity groups, consultants, nonprofit organizations, and the crop protection industry. Key recommendations emphasized the need for 1) more effective, timely, open communication among registrants, risk assessors, and risk managers earlier in the registration process to identify specific protection goals, address areas of potential concern where higher tier studies or assessments may be required, and if a higher tier study is necessary that there is agreement on study design; 2) minimizing the complexity of study designs while retaining high value to the risk assessment and risk management process; 3) greater transparency regarding critical factors utilized in risk management decisions with clearly defined protection goals that are operational; and 4) retrospective analyses of success-failure learnings on the acceptability of higher tier studies to help inform registrants on how to improve the application of such studies to risk assessments and the risk management process. Integr Environ Assess Manag 2019;15:714-725. © 2019 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Agricultura/legislação & jurisprudência , Regulamentação Governamental , Guias como Assunto , Praguicidas/toxicidade , Gestão de Riscos/normas , Medição de Risco/normas , Estados Unidos
14.
Environ Sci Technol ; 53(9): 4988-4996, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30921519

RESUMO

A 6 × 2 factorial study was conducted to investigate the effects of copper oxide nanoparticles (nCuO, 0-100 mg/L), arsenic (As, 0-10 mg/kg), and their interaction on uptake, distribution, and speciation of Cu and As in rice plants ( Oryza sativa japonica 'Koshihikari'). Arsenic (in As-addition treatments) and Cu in seedling roots (SRs) were 1.45 and 1.58 times those in soil, respectively. Arsenic and Cu concentrations further increased in mature plant roots (MRs), which were 2.06 and 2.35 times those in soil, respectively. Arsenic and Cu concentrations in seedling shoots (SSs) were 79% and 54% lower than those in SRs, respectively. The mature stems, however, contained only 3% and 44% of As and Cu in SSs. Copper in flag leaves did not vary much compared to that in stems, whereas As was 14.5 times that in stems. Species transformations of Cu and As were observed in rice including reductions of Cu(II) to Cu(I) and As(V) to As(III). Arsenic in dehusked grains was negatively correlated with Cu and was lowered by nCuO below the WHO (World Health Organization) maximum safe concentration for white rice (200 ng/g). This may alleviate As adverse effects on humans from rice consumption.


Assuntos
Arsênio , Nanopartículas , Oryza , Poluentes do Solo , Animais , Cobre , Humanos , Óxidos , Raízes de Plantas
15.
Environ Sci Technol ; 52(23): 13728-13737, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30403853

RESUMO

A factorial study was conducted to evaluate the phytotoxicity of copper oxide nanoparticles (nCuO, 0.1-100 mg/L), arsenic (As, 0 and 10 mg/kg), and their interaction to rice plants ( Oryza sativa japonica 'Koshihikari') during the life cycle. No significant effect was observed on seed germination. The main effects of nCuO and As were observed on lengths and biomasses of seedling shoots and roots and on root branching. The interaction between nCuO and As also significantly influenced these parameters. nCuO addition increased Cu uptake in seedlings and generally improved seedling growth. With As addition, As was highly concentrated in roots and increased in shoots, and seedling growth was also inhibited. Additionally, nCuO and As had significant main and interaction effects on mature plant dry biomass, panicle number, total grain weight, average grain weight, and several other panicle parameters. Moreover, nCuO and As interacted to affect panicle emergence. nCuO also decreased As accumulation in dehusked grains. The accelerated heading stage by nCuO may help shorten the life cycle of rice plants, thereby reducing As accumulation in grains. This study is the first to examine the influence of nCuO in combination with As on the life cycle of rice plants.


Assuntos
Arsênio , Nanopartículas , Oryza , Animais , Cobre , Óxidos , Raízes de Plantas , Plântula
16.
Chemosphere ; 206: 330-337, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29754057

RESUMO

Arsenic (As) causes phytotoxicity to rice plants, decreases rice production and causes serious human health concerns due to rice consumption. Additional stresses may be posed to rice plants due to the increasing release into the environment by the expanding production and application of copper oxide nanoparticles (nCuO). The influence of nCuO on As uptake in and effects on rice (Oryza sativa japonica) are explored here for the first time. An 18-d factorial experiment was conducted to determine main effects of nCuO (0, 0.1, 1.0, 10, 50, and 100 mg/L) and As (0 and 10 mg/kg), and the interaction between nCuO and As on rice seed germination and seedling growth. Arsenic alone decreased the germination percentage. Both As and nCuO reduced seedling shoot and root length, and exhibited interactive effects. nCuO and As also produced an interaction effect on the number of root branches (NRB) of rice seedlings. Notably, high nCuO concentrations (50 and 100 mg/L) mitigated the negative effect of As on the NRB. Copper uptake in shoots and roots was linearly correlated with Cu concentration in the sand without As addition (R2 > 0.756). Whereas, As addition to the sand produced non-monotonic changes in Cu concentrations in shoots and roots versus Cu concentration in the sand (R2 > 0.890). Arsenic concentration in shoots had a slightly negative linear correlation with Cu concentration in the sand (R2 = 0.275).


Assuntos
Arsênio/química , Cobre/química , Nanopartículas/química , Oryza/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Humanos
17.
Bull Environ Contam Toxicol ; 100(6): 809-814, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29654375

RESUMO

A consistent analytical method incorporating sulfuric acid (H2SO4) digestion and ICP-MS quantification has been developed for TiO2 quantification in biotic and abiotic environmentally relevant matrices. Sample digestion in H2SO4 at 110°C provided consistent results without using hydrofluoric acid or microwave digestion. Analysis of seven replicate samples for four matrices on each of 3 days produced Ti recoveries of 97% ± 2.5%, 91 % ± 4.0%, 94% ± 1.8%, and 73 % ± 2.6% (mean ± standard deviation) from water, fish tissue, periphyton, and sediment, respectively. The method demonstrated consistent performance in analysis of water collected over a 1 month.


Assuntos
Espectrometria de Massas/métodos , Ácidos Sulfúricos/química , Titânio/análise , Animais , Peixes/metabolismo , Micro-Ondas , Nanopartículas
18.
Environ Toxicol Chem ; 37(1): 11-20, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28796373

RESUMO

Copper oxide nanoparticles (CuO NPs) are widely used in many industries. The increasing release of CuO NPs from both intentional and unintentional sources into the environment may pose risks to rice plants, thereby reducing the quality or quantity of this staple grain in the human diet. Not only has arsenic (As) contamination decreased rice yield, but As accumulation in rice has also been a great human health concern for a few decades. New technologies have succeeded in removing As from water by nanomaterials. By all accounts, few studies have addressed CuO NP phytotoxicity to rice, and the interactions of CuO NPs with As are poorly described. The present study 1) reviews studies about the environmental behavior and phytotoxicity of CuO NPs and As and research about the interaction of CuO NPs with As in the environment, 2) discusses critically the potential mechanisms of CuO NP and As toxicity in plants and their interaction, and 3) proposes future research directions for solving the As problem in rice. Environ Toxicol Chem 2018;37:11-20. © 2017 SETAC.


Assuntos
Arsênio/toxicidade , Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Oryza/fisiologia , Saúde , Humanos , Oryza/efeitos dos fármacos , Pesquisa
19.
Environ Pollut ; 207: 248-55, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26412264

RESUMO

A combination of multiple stressors may be linked to global amphibian declines. Of these, pesticides and UVB radiation co-exposures were examined on the African clawed frog (Xenopus laevis) to provide information that may be useful for amphibian conservation. The independent action model and inferential statistics were used to examine interactions between pesticides (malathion, endosulfan, α-cypermethrin, or chlorothalonil) and environmentally relevant UVB exposures. UVB radiation alone caused 35-68% mortality and nearly 100% of malformations. Pesticides and UVB had additive effects on larval mortality; however, several non-additive effects (antagonistic and synergistic interactions) were observed for total body length. Insecticides mainly affected axial development, whereas UVB radiation caused high incidence of edema, gut malformations, and abnormal tail tips. These results suggest that sublethal developmental endpoints were more sensitive for detecting joint effects. This work has implications for amphibian risk assessments for ecosystems where pesticides and high UVB radiation may co-occur.


Assuntos
Anormalidades Induzidas por Medicamentos , Anormalidades Induzidas por Radiação , Praguicidas/toxicidade , Raios Ultravioleta/efeitos adversos , Xenopus laevis , Animais , Endossulfano/toxicidade , Exposição Ambiental/efeitos adversos , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Larva/efeitos da radiação , Malation/toxicidade , Nitrilas/toxicidade , Piretrinas/toxicidade , Testes de Toxicidade
20.
Environ Sci Technol ; 49(14): 8796-803, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26098147

RESUMO

Studies of steroid growth promoters from beef cattle feedyards have previously focused on effluent or surface runoff as the primary route of transport from animal feeding operations. There is potential for steroid transport via fugitive airborne particulate matter (PM) from cattle feedyards; therefore, the objective of this study was to characterize the occurrence and concentration of steroid growth promoters in PM from feedyards. Air sampling was conducted at commercial feedyards (n = 5) across the Southern Great Plains from 2010 to 2012. Total suspended particulates (TSP), PM10, and PM2.5 were collected for particle size analysis and steroid growth promoter analysis. Particle size distributions were generated from TSP samples only, while steroid analysis was conducted on extracts of PM samples using liquid chromatography mass spectrometry. Of seven targeted steroids, 17α-estradiol and estrone were the most commonly detected, identified in over 94% of samples at median concentrations of 20.6 and 10.8 ng/g, respectively. Melengestrol acetate and 17α-trenbolone were detected in 31% and 39% of all PM samples at median concentrations of 1.3 and 1.9 ng/g, respectively. Results demonstrate PM is a viable route of steroid transportation and may be a significant contributor to environmental steroid hormone loading from cattle feedyards.


Assuntos
Ração Animal , Hormônios/análise , Material Particulado/química , Carne Vermelha , Esteroides/análise , Poluentes Atmosféricos/análise , Animais , Bovinos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA