Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Am J Physiol Renal Physiol ; 320(6): F1093-F1105, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33843272

RESUMO

Hypertension and diabetes are the greatest factors influencing the progression of chronic kidney disease (CKD). Investigation into the role of nephron number in CKD alone or with hypertension has revealed a strong inverse relationship between the two; however, not much is known about the connection between nephron number and diabetic kidney disease. The heterogeneous stock-derived model of unilateral renal agenesis (HSRA) rat, a novel model of nephron deficiency, provides a unique opportunity to study the association between nephron number and hypertension and diabetes on CKD. HSRA rats exhibit failure of one kidney to develop in 50-75% of offspring, whereas the remaining offspring are born with two kidneys. Rats born with one kidney (HSRA-S) develop significant renal injury with age compared with two-kidney littermates (HSRA-C). The induction of hypertension as a secondary stressor leads to significantly more renal injury in HSRA-S compared with HSRA-C rats and nephrectomized HSRA-C (HSRA-UNX) rats. The present study sought to address the hypothesis that nephron deficiency in the HSRA rat would hasten renal injury in the presence of a secondary stressor of hyperglycemia. HSRA animals did not exhibit diabetes-related traits at any age; thus, streptozotocin (STZ) was used to induce hyperglycemia in HSRA-S, HSRA-C, and HSRA-UNX rats. STZ- and vehicle-treated animals were followed for 15 wk. STZ-treated animals developed robust hyperglycemia, but in contrast to the response to hypertension, neither HSRA-S nor HSRA-UNX animals developed proteinuria compared with vehicle treatment. In total, our data indicate that hyperglycemia from STZ alone does not have a significant impact on the onset or progression of injury in young one-kidney HSRA animals.NEW & NOTEWORTHY The HSRA rat, a novel model of nephron deficiency, provides a unique opportunity to study the association between nephron number and confounding cardiovascular complications that impact kidney health. Although hypertension was previously shown to exacerbate renal injury in young HSRA animals, diabetic hyperglycemia did not lead to worse renal injury, suggesting that nephron number has limited impact on kidney injury, at least in this model.


Assuntos
Envelhecimento , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/patologia , Rim Único/metabolismo , Animais , Hiperglicemia , Rim/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos
2.
Physiol Genomics ; 52(1): 56-70, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841396

RESUMO

The HSRA rat is a model of congenital abnormalities of the kidney and urogenital tract (CAKUT). Our laboratory has used this model to investigate the role of nephron number (functional unit of the kidney) in susceptibility to develop kidney disease as 50-75% offspring are born with a single kidney (HSRA-S), while 25-50% are born with two kidneys (HSRA-C). HSRA-S rats develop increased kidney injury and hypertension with age compared with nephrectomized two-kidney animals (HSRA-UNX), suggesting that even slight differences in nephron number can be an important driver in decline in kidney function. The HSRA rat was selected and inbred from a family of outbred heterogeneous stock (NIH-HS) rats that exhibited a high incidence of CAKUT. The HS model was originally developed from eight inbred strains (ACI, BN, BUF, F344, M520, MR, WKY, and WN). The genetic make-up of the HSRA is therefore a mosaic of these eight inbred strains. Interestingly, the ACI progenitor of the HS model exhibits CAKUT in 10-15% of offspring with the genetic cause being attributed to the presence of a long-term repeat (LTR) within exon 1 of the c-Kit gene. Our hypothesis is that the HSRA and ACI share this common genetic cause, but other alleles in the HSRA genome contribute to the increased penetrance of CAKUT (75% HSRA vs. 15% in ACI). To facilitate genetic studies and better characterize the model, we sequenced the whole genome of the HSRA to a depth of ~50×. A genome-wide variant analysis of high-impact variants identified a number of novel genes that could be linked to CAKUT in the HSRA model. In summary, the identification of new genes/modifiers that lead to CAKUT/loss of one kidney in the HSRA model will provide greater insight into association between kidney development and susceptibility to develop cardiovascular disease later in life.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Néfrons/embriologia , Organogênese/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Sequenciamento Completo do Genoma , Animais , Sequência de Bases , Cromossomos de Mamíferos/genética , Modelos Animais de Doenças , Genoma , Genoma Mitocondrial , Íntrons/genética , Mitocôndrias/genética , Filogenia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA