Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nat Commun ; 15(1): 447, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200091

RESUMO

Accumulation of advanced glycation end products (AGEs) on biopolymers accompanies cellular aging and drives poorly understood disease processes. Here, we studied how AGEs contribute to development of early onset Parkinson's Disease (PD) caused by loss-of-function of DJ1, a protein deglycase. In induced pluripotent stem cell (iPSC)-derived midbrain organoid models deficient for DJ1 activity, we find that lysosomal proteolysis is impaired, causing AGEs to accumulate, α-synuclein (α-syn) phosphorylation to increase, and proteins to aggregate. We demonstrated these processes are at least partly driven by astrocytes, as DJ1 loss reduces their capacity to provide metabolic support and triggers acquisition of a pro-inflammatory phenotype. Consistently, in co-cultures, we find that DJ1-expressing astrocytes are able to reverse the proteolysis deficits of DJ1 knockout midbrain neurons. In conclusion, astrocytes' capacity to clear toxic damaged proteins is critical to preserve neuronal function and their dysfunction contributes to the neurodegeneration observed in a DJ1 loss-of-function PD model.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Proteostase , Astrócitos , Proteólise , Mesencéfalo , Organoides , Lisossomos
2.
medRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076956

RESUMO

Microglia, the innate immune cells of the central nervous system, have been genetically implicated in multiple neurodegenerative diseases. We previously mapped the genetic regulation of gene expression and mRNA splicing in human microglia, identifying several loci where common genetic variants in microglia-specific regulatory elements explain disease risk loci identified by GWAS. However, identifying genetic effects on splicing has been challenging due to the use of short sequencing reads to identify causal isoforms. Here we present the isoform-centric microglia genomic atlas (isoMiGA) which leverages the power of long-read RNA-seq to identify 35,879 novel microglia isoforms. We show that the novel microglia isoforms are involved in stimulation response and brain region specificity. We then quantified the expression of both known and novel isoforms in a multi-ethnic meta-analysis of 555 human microglia short-read RNA-seq samples from 391 donors, the largest to date, and found associations with genetic risk loci in Alzheimer's disease and Parkinson's disease. We nominate several loci that may act through complex changes in isoform and splice site usage.

3.
iScience ; 26(9): 107525, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37646018

RESUMO

The hypothalamus is a region of the brain that plays an important role in regulating body functions and behaviors. There is a growing interest in human pluripotent stem cells (hPSCs) for modeling diseases that affect the hypothalamus. Here, we established an hPSC-derived hypothalamus organoid differentiation protocol to model the cellular diversity of this brain region. Using an hPSC line with a tyrosine hydroxylase (TH)-TdTomato reporter for dopaminergic neurons (DNs) and other TH-expressing cells, we interrogated DN-specific pathways and functions in electrophysiologically active hypothalamus organoids. Single-cell RNA sequencing (scRNA-seq) revealed diverse neuronal and non-neuronal cell types in mature hypothalamus organoids. We identified several molecularly distinct hypothalamic DN subtypes that demonstrated different developmental maturities. Our in vitro 3D hypothalamus differentiation protocol can be used to study the development of this critical brain structure and can be applied to disease modeling to generate novel therapeutic approaches for disorders centered around the hypothalamus.

4.
Animals (Basel) ; 13(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36611775

RESUMO

The current study evaluated the effects of hydrolyzable and condensed tannins from chestnut and quebracho wood, respectively (TSP, Silvafeed®), on zebrafish with intestinal inflammation induced by a plant-based diet (basal diet). Four experimental diets were prepared as follows: the basal diet + 0 TSP, the basal diet + TSP at 0.9 g/kg of feed, the basal diet + TSP at 1.7 g/kg of feed, and the basal diet + TSP at 3.4 g/kg of feed. Eighty-four zebrafish (Danio rerio) were fed for 12 days with the experimental diets. In zebrafish fed the basal diet, intestine integrity appeared to be altered, with damaged intestinal villi, high immunoexpression of tumor necrosis factor-α (TNFα) and cyclooxygenase 2 (COX2), and high expression of the cox2, interleukin 1 (il-1b), interleukin 8 (cxcl8-l1), and tnfα genes. The tannin treatment partially restored intestinal morphology and downregulated the expression of cytokines. The best activity was detected with 1.7 and 3.4 g/kg of feed. In the guts of all groups, Proteobacteria, Fusobacteria, Firmicutes, and Bacteroidetes were the most represented phyla. The most represented genera were Plesiomonas and Sphingomonas, belonging to the Proteobacteria phylum; Cetobacterium, belonging to the Fusobacteria phylum; and Lactobacillus, belonging to the Firmicutes phylum. No significant differences were detected among groups, except for a slight decrease in the Fusobacteria phylum and slight increases in the Shewanella and Bacteroides genera with TSP. In conclusion, these results suggest that tannins can improve the zebrafish intestinal inflammation caused by a terrestrial-plant-based diet in a dose-dependent manner.

5.
STAR Protoc ; 2(2): 100463, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33997803

RESUMO

Here, we describe a high-throughput 3D differentiation protocol for deriving midbrain dopaminergic neurons from human pluripotent stem cells. The use of organoids has become prevalent in disease modeling, but there is a high demand for more homogeneous cultures. Our approach is advantageous for large-scale production of uniform midbrain organoids that can be maintained in diverse formats, and our reporters allow for sorting of dopaminergic neurons. The maturing long-term organoid cultures can be used as a model for the entire midbrain. For complete details on the use and execution of this protocol, please refer to Ahfeldt et al. (2020).


Assuntos
Neurônios Dopaminérgicos , Mesencéfalo , Organoides , Células-Tronco Pluripotentes , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Humanos , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Organoides/citologia , Organoides/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
6.
Stem Cell Res Ther ; 12(1): 253, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926571

RESUMO

The derivation of human embryonic stem cells followed by the discovery of induced pluripotent stem cells and leaps in genome editing approaches have continuously fueled enthusiasm for the development of new models of neurodegenerative diseases such as Parkinson's disease (PD). PD is characterized by the relative selective loss of dopaminergic neurons (DNs) in specific areas of substantia nigra pars compacta (SNpc). While degeneration in late stages can be widespread, there is stereotypic early degeneration of these uniquely vulnerable neurons. Various causes of selective vulnerability have been investigated but much remains unclear. Most studies have sought to identify cell autonomous properties of the most vulnerable neurons. However, recent findings from genetic studies and model systems have added to our understanding of non-cell autonomous contributions including regional-specific neuro-immune interactions with astrocytes, resident or damage-activated microglia, neuro-glia cell metabolic interactions, involvement of endothelial cells, and damage to the vascular system. All of these contribute to specific vulnerability and, along with aging and environmental factors, might be integrated in a complex stressor-threshold model of neurodegeneration. In this forward-looking review, we synthesize recent advances in the field of PD modeling using human pluripotent stem cells, with an emphasis on organoid and complex co-culture models of the nigrostriatal niche, with emerging CRISPR applications to edit or perturb expression of causal PD genes and associated risk factors, such as GBA, to understand the impact of these genes on relevant phenotypes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Células-Tronco Pluripotentes , Neurônios Dopaminérgicos , Células Endoteliais , Humanos , Doença de Parkinson/genética , Doença de Parkinson/terapia , Substância Negra
7.
Front Cell Dev Biol ; 9: 826037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35083225

RESUMO

Apoptosis is crucial for the correct development of the nervous system. In adulthood, the same protein machinery involved in programmed cell death can control neuronal adaptiveness through modulation of synaptic pruning and synaptic plasticity processes. Caspases are the main executioners in these molecular pathways, and their strict regulation is essential to perform neuronal remodeling preserving cell survival. FAIM-L and SIVA-1 are regulators of caspase activation. In this review we will focus on FAIM-L and SIVA-1 as two functional antagonists that modulate non-apoptotic caspase activity in neurons. Their participation in long-term depression and neurite pruning will be described in base of the latest studies performed. In addition, the association of FAIM-L non-apoptotic functions with the neurodegeneration process will be reviewed.

8.
Cell Death Dis ; 11(2): 82, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015347

RESUMO

The long isoform of Fas apoptosis inhibitory molecule (FAIM-L) is a neuron-specific death receptor antagonist that modulates apoptotic cell death and mechanisms of neuronal plasticity. FAIM-L exerts its antiapoptotic action by binding to X-linked inhibitor of apoptosis protein (XIAP), an inhibitor of caspases, which are the main effectors of apoptosis. XIAP levels are regulated by the ubiquitin-proteasome pathway. FAIM-L interaction with XIAP prevents the ubiquitination and degradation of the latter, thereby allowing it to inhibit caspase activation. This interaction also modulates non-apoptotic functions of caspases, such as the endocytosis of AMPA receptor (AMPAR) in hippocampal long-term depression (LTD). The molecular mechanism of action exerted by FAIM-L is unclear since the consensus binding motifs are still unknown. Here, we performed a two-hybrid screening to discover novel FAIM-L-interacting proteins. We found a functional interaction of SIVA-1 with FAIM-L. SIVA-1 is a proapoptotic protein that has the capacity to interact with XIAP. We describe how SIVA-1 regulates FAIM-L function by disrupting the interaction of FAIM-L with XIAP, thereby promoting XIAP ubiquitination, caspase-3 activation and neuronal death. Furthermore, we report that SIVA-1 plays a role in receptor internalization in synapses. SIVA-1 is upregulated upon chemical LTD induction, and it modulates AMPAR internalization via non-apoptotic activation of caspases. In summary, our findings uncover SIVA-1 as new functional partner of FAIM-L and demonstrate its role as a regulator of caspase activity in synaptic function.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Proteínas Inibidoras de Apoptose/metabolismo , Plasticidade Neuronal , Animais , Proteínas Reguladoras de Apoptose/genética , Caspase 3/metabolismo , Células Cultivadas , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , Ligação Proteica , Ratos , Receptores de AMPA/metabolismo , Ubiquitinação
9.
Front Cell Dev Biol ; 8: 584606, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425889

RESUMO

Apoptosis plays an important role during development, control of tissue homeostasis and in pathological contexts. Apoptosis is executed mainly through the intrinsic pathway or the death receptor pathway, i.e., extrinsic pathway. These processes are tightly controlled by positive and negative regulators that dictate pro- or anti-apoptotic death receptor signaling. One of these regulators is the Fas Apoptotic Inhibitory Molecule (FAIM). This death receptor antagonist has two main isoforms, FAIM-S (short) which is the ubiquitously expressed, and a longer isoform, FAIM-L (long), which is mainly expressed in the nervous system. Despite its role as a death receptor antagonist, FAIM also participates in cell death-independent processes such as nerve growth factor-induced neuritogenesis or synaptic transmission. Moreover, FAIM isoforms have been implicated in blocking the formation of protein aggregates under stress conditions or de-regulated in certain pathologies such as Alzheimer's and Parkinson's diseases. Despite the role of FAIM in physiological and pathological processes, little is known about the molecular mechanisms involved in the regulation of its expression. Here, we seek to investigate the post-transcriptional regulation of FAIM isoforms by microRNAs (miRNAs). We found that miR-206, miR-1-3p, and miR-133b are direct regulators of FAIM expression. These findings provide new insights into the regulation of FAIM and may provide new opportunities for therapeutic intervention in diseases in which the expression of FAIM is altered.

10.
Fish Physiol Biochem ; 46(1): 331-344, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31713703

RESUMO

The existence of nutritional and energy reserves is fundamental for fish female fertility, so that the existence of a correlation between metabolic reserves and reproductive capacity is suggested. Leptin regulates body weight and energy homeostasis. Estradiol induces the synthesis of vitellogenin, a phospholipoglycoprotein produced by the liver and taken up by the growing oocytes. The objective of this study was to investigate the possible existence of a crosstalk between 17ß-estradiol (E2) and leptin in the modulation of E2-induced vtg in the rainbow trout Oncorhynchus mykiss. Liver slices were incubated with recombinant trout leptin (rt-lep) at three different concentrations (1-10-100 ng/ml). rt-lep brought about the decrease of E2-induced vtg secretion in the medium and the down-regulation of vtg mRNA expression. Moreover, rt-lep stimulated the lipase activity and diminished the liver fatty acid content. The combined employment of signal transduction inhibitors and the analysis of signal transduction phosphorylated factors revealed that rt-lep effect on E2-induced vtg occurred through the activation of phosphodiesterase, protein kinase C, MAP kinases, and protein kinase A. In conclusion, our study suggests that leptin influences E2-induced vtg synthesis in the rainbow trout Oncorhynchus mykiss by modifying both the protein and the lipid components.


Assuntos
Estradiol/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Oncorhynchus mykiss/metabolismo , Vitelogeninas/biossíntese , Animais , Estradiol/genética , Leptina/genética , Técnicas de Cultura de Tecidos
11.
Foods ; 8(4)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939822

RESUMO

In this study different methods were used to evaluate the effectiveness of a carrageenan coating and carrageenan coating incorporating lemon essential oil (ELO) in preserving the physicochemical and olfactory characteristics of trout fillets stored at 4 °C up to 12 days. The fillet morphological structure was analyzed by histological and immunological methods; lipid peroxidation was performed with the peroxide and thiobarbituric acid reactive substances (TBARS) tests. At the same time, two less time-consuming methods, such as Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) spectroscopy and the electronic nose, were used. Uncoated trout fillets (UTF) showed a less compact tissue structure than carrageenan-coated threads (CTF) and coated fillets of carrageenan (active) ELO (ACTF), probably due to the degradation of collagen, as indicated by optical microscopy and ATR-FTIR. UTF showed greater lipid oxidation compared to CTF and ACTF, as indicated by the peroxide and TBARS tests and ATR-FTIR spectroscopy. The carrageenan coating containing ELO preserved the olfactory characteristics of the trout fillets better than the carrageenan coating alone, as indicated by the electronic nose analysis. This study confirms that both carrageenan and ELO containing carrageenan coatings slow down the decay of the physicochemical and olfactory characteristics of fresh trout fillets stored at 4 °C, although the latter is more effective.

12.
Mol Reprod Dev ; 86(10): 1348-1356, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30637836

RESUMO

Drugs such as oral contraceptives and hormone replacement therapies are known to find their way into rivers, lakes and seas, and have the potential to affect reproduction and development of the wildlife. The knowledge of the reproductive mechanisms and their regulation in aquatic species is of fundamental importance for predicting and preventing the damage by the increasing release of such chemicals in the environment. Mifepristone, a synthetic steroid used as a drug for chemical abortion, works by blocking the effects of progesterone. Its presence in fresh and salt water has been reported, representing a danger for aquatic species. In this frame, we evaluated in both acute and chronic exposures, the effects of mifepristone on the reproductive performance of the sea urchin P. lividus. In both acute and chronic exposures, mifepristone did not affect the histological structure of the gonads. However, mifepristone administered to females caused the decrease of the percentage of normal developed plutei larvae compared with the control, whereas it did not alter sperm motility parameters and fertilization success in males. The immunohistological localization of progesterone receptor-like immunoreactivity on the plasma membrane of oocytes and ova and the molecular weight of a progesterone receptor-like immunoband identified by western blotting, are in agreement with a membrane progesterone receptor deducted from the genome sequence of the sea urchin Strongylocentrotus purpuratus and suggest that in P. lividus mifepristone actions may be mediated by a progesterone receptor.


Assuntos
Fertilidade/efeitos dos fármacos , Mifepristona/toxicidade , Paracentrotus/efeitos dos fármacos , Animais , Embrião não Mamífero/efeitos dos fármacos , Feminino , Masculino , Óvulo/efeitos dos fármacos , Paracentrotus/embriologia , Paracentrotus/crescimento & desenvolvimento , Paracentrotus/fisiologia , Receptores de Progesterona/metabolismo , Reprodução/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos
13.
J Biosci ; 43(4): 585-596, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30207306

RESUMO

In the present study, the effects of polyphenols on the chemical composition of the hepatopancreas of the Astacus leptodactylus, a highly sought farmed crayfish, have been investigated by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The hepatopancreas spectrum was quite complex and contained several peaks arising from the contribution of different functional groups belonging to protein, lipids and carbohydrates. The PCA statistical analysis revealed that there were significant differences between crayfish fed a diet without polyphenols and crayfish fed a diet containing polyphenols. Such differences indicated an increase in lipids and proteins in the hepatopancreas of polyphenol-fed crayfish. In conclusion, the analysis of the infrared spectral profile of the hepatopancreas of Astacus leptodactylus, allowed us to elucidate the changes in different biomolecules in response to polyphenol treatment, and confirms the suitability of ATR-FTIR spectral data to analyze diet-induced metabolic effects. These considerations, coupled with the small amount of sample and no preparation needed, make ATR-FTIR a useful tool for routine analyses where the metabolic impact of substances is investigated, especially with a large number of samples.


Assuntos
Astacoidea/metabolismo , Brânquias/metabolismo , Hepatopâncreas/metabolismo , Polifenóis/farmacologia , Animais , Astacoidea/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Hepatopâncreas/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolômica , Proteínas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Ann Anat ; 220: 70-78, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30114450

RESUMO

In this study, evidence for leptin receptor (LR) and gastric leptin immunoreactivity along the digestive tract of the rainbow trout (Oncorhynchus mykiss), is reported. Besides this, the regulation of gastric leptin and its transcript by fatty acids was analyzed in vitro. LR was detected mainly in the cells of the stomach gastric glands and in the brush border of the epithelium of the anterior, middle and distal intestine. In the stomach LR was co-distributed with leptin. The regulation of gastric leptin and its transcript by fatty acids was analyzed by in vitro incubations. Rabbit polyclonal antibodies anti rainbow trout leptin were developed and employed to detect leptin concentration in the stomach and in the incubation medium. Stomach slices were incubated with butyric (4:0), oleic (18:1n-9), α-linolenic (18:3n-3) and arachidonic fatty acids (20:4n-6). All fatty acids caused an increase in the protein in both the stomach and culture medium, while leptin transcript was not modified. Overall, the results confirm the gastric leptin release upon nutritional modulation.


Assuntos
Trato Gastrointestinal/metabolismo , Leptina/metabolismo , Oncorhynchus mykiss/metabolismo , Receptores para Leptina/metabolismo , Estômago/fisiologia , Animais , Ácidos Graxos/metabolismo , Feminino , Mucosa Gástrica/metabolismo , Trato Gastrointestinal/imunologia , Imuno-Histoquímica , Técnicas In Vitro , Leptina/biossíntese , Masculino , Proteínas/metabolismo , Receptores para Leptina/biossíntese , Receptores para Leptina/imunologia , Distribuição Tecidual
15.
PLoS One ; 12(10): e0185327, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28981531

RESUMO

Fas Apoptosis Inhibitory Molecule (FAIM) is an evolutionarily highly conserved death receptor antagonist, widely expressed and known to participate in physiological and pathological processes. Two FAIM transcript variants have been characterized to date, namely FAIM short (FAIM-S) and FAIM long (FAIM-L). FAIM-S is ubiquitously expressed and serves as an anti-apoptotic protein in the immune system. Furthermore, in neurons, this isoform promotes NGF-induced neurite outgrowth through NF-кB and ERK signaling. In contrast FAIM-L is found only in neurons, where it exerts anti-apoptotic activity against several stimuli. In addition to these two variants, in silico studies point to the existence of two additional isoforms, neither of which have been characterized to date. In this regard, here we confirm the presence of these two additional FAIM isoforms in human fetal brain, fetal and adult testes, and placenta tissues. We named them FAIM-S_2a and FAIM-L_2a since they have the same sequence as FAIM-S and FAIM-L, but include exon 2a. PCR and western blot revealed that FAIM-S_2a shows ubiquitous expression in all the tissues and cellular models tested, while FAIM-L_2a is expressed exclusively in tissues of the nervous system. In addition, we found that, when overexpressed in non-neuronal cells, the splicing factor nSR100 induces the expression of the neuronal isoforms, thus identifying it as responsible for the generation of FAIM-L and FAIM-L_2a. Functionally, FAIM-S_2a and FAIM-L_2a increased neurite outgrowth in response to NGF stimulation in a neuronal model. This observation thus, supports the notion that these two isoforms are involved in neuronal differentiation. Furthermore, subcellular fractionation experiments revealed that, in contrast to FAIM-S and FAIM-L, FAIM-S_2a and FAIM-L_2a are able to localize to the nucleus, where they may have additional functions. In summary, here we report on two novel FAIM isoforms that may have relevant roles in the physiology and pathology of the nervous system.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Isoformas de Proteínas/metabolismo , Processamento Alternativo , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular , Éxons , Humanos , Conformação de Ácido Nucleico , Células PC12 , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estabilidade Proteica , RNA Mensageiro/química , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Termodinâmica
16.
Sci Rep ; 6: 35775, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27767058

RESUMO

Caspases have recently emerged as key regulators of axonal pruning and degeneration and of long-term depression (LTD), a long-lasting form of synaptic plasticity. However, the mechanism underlying these functions remains unclear. In this context, XIAP has been shown to modulate these processes. The neuron-specific form of FAIM protein (FAIM-L) is a death receptor antagonist that stabilizes XIAP protein levels, thus preventing death receptor-induced neuronal apoptosis. Here we show that FAIM-L modulates synaptic transmission, prevents chemical-LTD induction in hippocampal neurons, and thwarts axon degeneration after nerve growth factor (NGF) withdrawal. Additionally, we demonstrate that the participation of FAIM-L in these two processes is dependent on its capacity to stabilize XIAP protein levels. Our data reveal FAIM-L as a regulator of axonal degeneration and synaptic plasticity.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Degeneração Neural/metabolismo , Animais , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Axônios/metabolismo , Células Cultivadas , Gânglios Espinais/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , N-Metilaspartato/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Estabilidade Proteica , Proteólise , RNA Interferente Pequeno/genética , Receptores de AMPA/metabolismo , Regulação para Cima
17.
J Neurochem ; 139(1): 11-21, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27385439

RESUMO

The importance of death receptor (DR) signaling in embryonic development and physiological homeostasis is well established, as is the existence of several molecules that modulate DRs function, among them Fas Apoptotis Inhibitory Molecules. Although FAIM1, FAIM2, and FAIM3 inhibit Fas-induced cell death, they are not structurally related, nor do they share expression patterns. Moreover, they inhibit apoptosis through completely different mechanisms. FAIM1 and FAIM2 protect neurons from DR-induced apoptosis and are involved in neurite outgrowth and neuronal plasticity. FAIM1 inhibits Fas ligand- and tumor necrosis factor alpha-induced apoptosis by direct interaction with Fas receptor and through the stabilization of levels of X-linked inhibitor of apoptosis protein, a potent anti-apoptotic protein that inhibits caspases. Low FAIM1 levels are found in Alzheimer's disease, thus sensitizing neurons to tumor necrosis factor alpha and prompting neuronal loss. FAIM2 protects from Fas by direct interaction with Fas receptor, as well as by modulating calcium release at the endoplasmic reticulum through interaction with Bcl-xL. Several studies prove the role of FAIM2 in diseases of the nervous system, such as ischemia, bacterial meningitis, and neuroblastoma. The less characterized member of the FAIM family is FAIM3, which is expressed in tissues of the digestive and urinary tracts, bone marrow and testes, and restricted to the cerebellum in the nervous system. FAIM3 protects against DR-induced apoptosis by inducing the expression of other DR-antagonists such as CFLAR or through the interaction with the DR-adaptor protein Fas-associated via death domain. FAIM3 null mouse models reveal this protein as an important mediator of inflammatory autoimmune responses such as those triggered in autoimmune encephalomyelitis. Given the differences between FAIMs and the variety of processes in which they are involved, here we sought to provide a concise review about these molecules and their roles in the physiology and pathology of the nervous system. Even though they share name and inhibit Fas-induced cell death, Fas apoptotic inhibitory molecules (FAIMs) are not structurally related and inhibit apoptosis through completely different mechanisms. In this review, we describe FAIM1, FAIM2, and FAIM3 functions in the nervous system, and their implication in diverse pathologies such as neurodegenerative disease, cancer, or autoimmune diseases.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Morte Celular/genética , Sistema Nervoso , Receptor fas/antagonistas & inibidores , Receptor fas/genética , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Humanos , Camundongos
18.
J Biol Chem ; 291(3): 1221-34, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26582200

RESUMO

Death receptors are members of the tumor necrosis factor receptor superfamily involved in the extrinsic apoptotic pathway. Lifeguard (LFG) is a death receptor antagonist mainly expressed in the nervous system that specifically blocks Fas ligand (FasL)-induced apoptosis. To investigate its mechanism of action, we studied its subcellular localization and its interaction with members of the Bcl-2 family proteins. We performed an analysis of LFG subcellular localization in murine cortical neurons and found that LFG localizes mainly to the ER and Golgi. We confirmed these results with subcellular fractionation experiments. Moreover, we show by co-immunoprecipitation experiments that LFG interacts with Bcl-XL and Bcl-2, but not with Bax or Bak, and this interaction likely occurs in the endoplasmic reticulum. We further investigated the relationship between LFG and Bcl-XL in the inhibition of apoptosis and found that LFG protects only type II apoptotic cells from FasL-induced death in a Bcl-XL dependent manner. The observation that LFG itself is not located in mitochondria raises the question as to whether LFG in the ER participates in FasL-induced death. Indeed, we investigated the degree of calcium mobilization after FasL stimulation and found that LFG inhibits calcium release from the ER, a process that correlates with LFG blockage of cytochrome c release to the cytosol and caspase activation. On the basis of our observations, we propose that there is a required step in the induction of type II apoptotic cell death that involves calcium mobilization from the ER and that this step is modulated by LFG.


Assuntos
Apoptose , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Proteína Ligante Fas/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Feminino , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Interferência de RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
19.
Microsc Res Tech ; 78(8): 707-14, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26096763

RESUMO

In this study, we report the distribution of orexin A (OXA), orexin B (OXB), and orexin receptor (OX2R) immunoreactive (ir) cells in the hypothalamus and gastrointestinal tract of Oncorhynchus mykiss fed diets with different dietary fatty acid compositions. Trout were fed five iso-energetic experimental diets containing fish oil, or one of four different vegetable oils (olive, sunflower, linseed, and palm oils) as the added dietary lipid source for 12 weeks. OXA, OXB, and OX2R immunoreactive neurons and nervous fibers were identified in the lateral and ventro-medial hypothalamus. OXA, OXB, and OX2R ir cells were found in the mucosa and glands of the stomach and in the mucosa of both the pyloric cecae and intestine. OX2R ir cells were localized in the mucosa layer of both the pyloric cecae and intestine. These immunohistochemical (IHC) results were confirmed via Western blotting. Antibodies against preproorexin (PPO) crossreacted with a band of ∼16 kDa in the hypothalamus, stomach, pyloric cecae, and intestine. Antibodies against OX2R crossreacted with a band of ∼38 kDa in the hypothalamus, pyloric cecae, and intestine. The presence and distribution of OXA, OXB, and OX2R ir cells in the hypothalamus and gastrointestinal tract did not appear to be affected by dietary oils. The presence of orexin system immunoreactive cells in the stomach, pyloric cecae, and intestine of rainbow trout, but not in the enteric nervous system, could suggest a possible role of these peptides as signaling of gastric emptying or endocrine modulation, implying a main local action played by orexins.


Assuntos
Gorduras na Dieta/metabolismo , Proteínas de Peixes/metabolismo , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/fisiologia , Orexinas/metabolismo , Animais , Mucosa Gástrica/química , Mucosa Gástrica/metabolismo , Homeostase/fisiologia , Hipotálamo/química , Hipotálamo/metabolismo , Imuno-Histoquímica
20.
Mol Cancer ; 14: 62, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25890358

RESUMO

BACKGROUND: Patients with high-risk neuroblastoma (NBL) tumors have a high mortality rate. Consequently, there is an urgent need for the development of new treatments for this condition. Targeting death receptor signaling has been proposed as an alternative to standard chemo- and radio-therapies in various tumors. In NBL, this therapeutic strategy has been largely disregarded, possibly because ~50-70% of all human NBLs are characterized by caspase-8 silencing. However, the expression of caspase-8 is detected in a significant group of NBL patients, and they could therefore benefit from treatments that induce cell death through death receptor activation. Given that cytokines, such as TNFα, are able to upregulate Fas expression, we sought to address the therapeutic relevance of co-treatment with TNFα and FasL in NBL. METHODS: For the purpose of the study we used a set of eight NBL cell lines. Here we explore the cell death induced by TNFα, FasL, cisplatin, and etoposide, or a combination thereof by Hoechst staining and calcein viability assay. Further assessment of the signaling pathways involved was performed by caspase activity assays and Western blot experiments. Characterization of Fas expression levels was achieved by qRT-PCR, cell surface biotinylation assays, and cytometry. RESULTS: We have found that TNFα is able to increase FasL-induced cell death by a mechanism that involves the NF-κB-mediated induction of the Fas receptor. Moreover, TNFα sensitized NBL cells to DNA-damaging agents (i.e. cisplatin and etoposide) that induce the expression of FasL. Priming to FasL-, cisplatin-, and etoposide-induced cell death could only be achieved in NBLs that display TNFα-induced upregulation of Fas. Further analysis denotes that the high degree of heterogeneity between NBLs is also manifested in Fas expression and modulation thereof by TNFα. CONCLUSIONS: In summary, our findings reveal that TNFα sensitizes NBL cells to FasL-induced cell death by NF-κB-mediated upregulation of Fas and unveil a new mechanism through which TNFα enhances the efficacy of currently used NBL treatments, cisplatin and etoposide.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteína Ligante Fas/farmacologia , Regulação Neoplásica da Expressão Gênica , NF-kappa B/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Receptor fas/genética , Caspase 8/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Ativação Enzimática/efeitos dos fármacos , Etoposídeo/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interferon gama/farmacologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA