Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674509

RESUMO

Amyotrophic lateral sclerosis (ALS) is an incurable motor neuron disease whose etiology remains unresolved; nonetheless, mutations of superoxide dismutase 1 (SOD1) have been associated with several variants of ALS. Currently available pharmacologic interventions are only symptomatic and palliative in effect; therefore, there is a pressing demand for more effective drugs. This study examined potential therapeutic effects of growth hormone secretagogues (GHSs), a large family of synthetic compounds, as possible candidates for the treatment of ALS. Human neuroblastoma cells expressing the SOD1-G93A mutated protein (SH-SY5Y SOD1G93A cells) were incubated for 24 h with H2O2 (150 µM) in the absence, or presence, of GHS (1 µM), in order to study the protective effect of GHS against increased oxidative stress. The two GHSs examined in this study, hexarelin and JMV2894, protected cells from H2O2-induced cytotoxicity by activating molecules that regulate apoptosis and promote cell survival processes. These findings suggest the possibility of developing new GHS-based anti-oxidant and neuroprotective drugs with improved therapeutic potential. Further investigations are required for the following: (i) to clarify GHS molecular mechanisms of action, and (ii) to envisage the development of new GHSs that may be useful in ALS therapy.


Assuntos
Esclerose Lateral Amiotrófica , Neuroblastoma , Humanos , Animais , Camundongos , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Peróxido de Hidrogênio/farmacologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Linhagem Celular , Modelos Animais de Doenças , Camundongos Transgênicos
2.
Curr Neuropharmacol ; 21(12): 2376-2394, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36111771

RESUMO

Amyotrophic lateral sclerosis (ALS) arises from neuronal death due to complex interactions of genetic, molecular, and environmental factors. Currently, only two drugs, riluzole and edaravone, have been approved to slow the progression of this disease. However, ghrelin and other ligands of the GHS-R1a receptor have demonstrated interesting neuroprotective activities that could be exploited in this pathology. Ghrelin, a 28-amino acid hormone, primarily synthesized and secreted by oxyntic cells in the stomach wall, binds to the pituitary GHS-R1a and stimulates GH secretion; in addition, ghrelin is endowed with multiple extra endocrine bioactivities. Native ghrelin requires esterification with octanoic acid for binding to the GHS-R1a receptor; however, this esterified form is very labile and represents less than 10% of circulating ghrelin. A large number of synthetic compounds, the growth hormone secretagogues (GHS) encompassing short peptides, peptoids, and non-peptidic moieties, are capable of mimicking several biological activities of ghrelin, including stimulation of GH release, appetite, and elevation of blood IGF-I levels. GHS have demonstrated neuroprotective and anticonvulsant effects in experimental models of pathologies both in vitro and in vivo. To illustrate, some GHS, currently under evaluation by regulatory agencies for the treatment of human cachexia, have a good safety profile and are safe for human use. Collectively, evidence suggests that ghrelin and cognate GHS may constitute potential therapies for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Grelina , Humanos , Grelina/uso terapêutico , Grelina/metabolismo , Receptores de Grelina/fisiologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Secretagogos , Hormônio do Crescimento/metabolismo
3.
Biomedicines ; 10(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36428476

RESUMO

This study investigated modifications of microRNA expression profiles in knee synovial fluid of patients with osteoarthritis (OA) and rupture of the anterior cruciate ligament (ACL). Twelve microRNAs (26a-5p, 27a-3p, let7a-5p, 140-5p, 146-5p, 155-5p, 16-5p,186-5p, 199a-3p, 210-3p, 205-5p, and 30b-5p) were measured by real-time quantitative polymerase chain reaction (RT-qPCR) in synovial fluids obtained from 30 patients with ACL tear and 18 patients with knee OA. These 12 miRNAs were chosen on the basis of their involvement in pathological processes of bone and cartilage. Our results show that miR-26a-5p, miR-186-5p, and miR-30b-5p were expressed in the majority of OA and ACL tear samples, whereas miR-199a-3p, miR-210-3p, and miR-205-5p were detectable only in a few samples. Interestingly, miR-140-5p was expressed in only one sample of thirty in the ACL tear group. miR-140-5p has been proposed to modulate two genes (BGN and COL5A1100) that are involved in ligamentous homeostasis; their altered expression could be linked with ACL rupture susceptibility. The expression of miR-30b-5p was higher in OA and chronic ACL groups compared to acute ACL samples. We provide evidence that specific miRNAs could be detected not only in synovial fluid of patients with OA, but also in post-traumatic ACL tears.

5.
Pharmaceuticals (Basel) ; 14(5)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066741

RESUMO

Hexarelin, a synthetic hexapeptide, exerts cyto-protective effects at the mitochondrial level in cardiac and skeletal muscles, both in vitro and in vivo, may also have important neuroprotective bioactivities. This study examined the inhibitory effects of hexarelin on hydrogen peroxide (H2O2)-induced apoptosis in Neuro-2A cells. Neuro-2A cells were treated for 24 h with various concentrations of H2O2 or with the combination of H2O2 and hexarelin following which cell viability and nitrite (NO2-) release were measured. Cell morphology was also documented throughout and changes arising were quantified using Image J skeleton and fractal analysis procedures. Apoptotic responses were evaluated by Real-Time PCR (caspase-3, caspase-7, Bax, and Bcl-2 mRNA levels) and Western Blot (cleaved caspase-3, cleaved caspase-7, MAPK, and Akt). Our results indicate that hexarelin effectively antagonized H2O2-induced damage to Neuro-2A cells thereby (i) improving cell viability, (ii) reducing NO2- release and (iii) restoring normal morphologies. Hexarelin treatment also reduced mRNA levels of caspase-3 and its activation, and modulated mRNA levels of the BCL-2 family. Moreover, hexarelin inhibited MAPKs phosphorylation and increased p-Akt protein expression. In conclusion, our results demonstrate neuroprotective and anti-apoptotic effects of hexarelin, suggesting that new analogues could be developed for their neuroprotective effects.

6.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802689

RESUMO

Palmitoylethanolamide (PEA) is an endogenous lipid produced on demand by neurons and glial cells that displays neuroprotective properties. It is well known that inflammation and neuronal damage are strictly related processes and that microglia play a pivotal role in their regulation. The aim of the present work was to assess whether PEA could exert its neuroprotective and anti-inflammatory effects through the modulation of microglia reactive phenotypes. In N9 microglial cells, the pre-incubation with PEA blunted the increase of M1 pro-inflammatory markers induced by lipopolysaccharide (LPS), concomitantly increasing those M2 anti-inflammatory markers. Images of microglial cells were processed to obtain a set of morphological parameters that highlighted the ability of PEA to inhibit the LPS-induced M1 polarization and suggested that PEA might induce the anti-inflammatory M2a phenotype. Functionally, PEA prevented Ca2+ transients in both N9 cells and primary microglia and antagonized the neuronal hyperexcitability induced by LPS, as revealed by multi-electrode array (MEA) measurements on primary cortical cultures of neurons, microglia, and astrocyte. Finally, the investigation of the molecular pathway indicated that PEA effects are not mediated by toll-like receptor 4 (TLR4); on the contrary, a partial involvement of cannabinoid type 2 receptor (CB2R) was shown by using a selective receptor inverse agonist.


Assuntos
Amidas/farmacologia , Etanolaminas/farmacologia , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Ácidos Palmíticos/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Ratos , Receptor CB2 de Canabinoide/metabolismo , Células THP-1 , Acetato de Tetradecanoilforbol/farmacologia , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Stem Cells Transl Med ; 9(9): 1068-1084, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32496649

RESUMO

The critical role of neuroinflammation in favoring and accelerating the pathogenic process in Alzheimer's disease (AD) increased the need to target the cerebral innate immune cells as a potential therapeutic strategy to slow down the disease progression. In this scenario, mesenchymal stem cells (MSCs) have risen considerable interest thanks to their immunomodulatory properties, which have been largely ascribed to the release of extracellular vesicles (EVs), namely exosomes and microvesicles. Indeed, the beneficial effects of MSC-EVs in regulating the inflammatory response have been reported in different AD mouse models, upon chronic intravenous or intracerebroventricular administration. In this study, we use the triple-transgenic 3xTg mice showing for the first time that the intranasal route of administration of EVs, derived from cytokine-preconditioned MSCs, was able to induce immunomodulatory and neuroprotective effects in AD. MSC-EVs reached the brain, where they dampened the activation of microglia cells and increased dendritic spine density. MSC-EVs polarized in vitro murine primary microglia toward an anti-inflammatory phenotype suggesting that the neuroprotective effects observed in transgenic mice could result from a positive modulation of the inflammatory status. The possibility to administer MSC-EVs through a noninvasive route and the demonstration of their anti-inflammatory efficacy might accelerate the chance of a translational exploitation of MSC-EVs in AD.


Assuntos
Doença de Alzheimer/terapia , Vesículas Extracelulares/transplante , Imunomodulação , Células-Tronco Mesenquimais/metabolismo , Neuroproteção , Administração Intranasal , Doença de Alzheimer/patologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Polaridade Celular , Células Cultivadas , Citocinas/metabolismo , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microglia/patologia , Fenótipo
8.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878142

RESUMO

VGF gene encodes for a neuropeptide precursor of 68 kDa composed by 615 (human) and 617 (rat, mice) residues, expressed prevalently in the central nervous system (CNS), but also in the peripheral nervous system (PNS) and in various endocrine cells. This precursor undergoes proteolytic cleavage, generating a family of peptides different in length and biological activity. Among them, TLQP-21, a peptide of 21 amino acids, has been widely investigated for its relevant endocrine and extraendocrine activities. The complement complement C3a receptor-1 (C3aR1) has been suggested as the TLQP-21 receptor and, in different cell lines, its activation by TLQP-21 induces an increase of intracellular Ca2+. This effect relies both on Ca2+ release from the endoplasmic reticulum (ER) and extracellular Ca2+ entry. The latter depends on stromal interaction molecules (STIM)-Orai1 interaction or transient receptor potential channel (TRPC) involvement. After Ca2+ entry, the activation of outward K+-Ca2+-dependent currents, mainly the KCa3.1 currents, provides a membrane polarizing influence which offset the depolarizing action of Ca2+ elevation and indirectly maintains the driving force for optimal Ca2+ increase in the cytosol. In this review, we address the main endocrine and extraendocrine actions displayed by TLQP-21, highlighting recent findings on its mechanism of action and its potential in different pathological conditions.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Neuropeptídeos/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Animais , Citosol/efeitos dos fármacos , Citosol/metabolismo , Humanos , Moléculas de Interação Estromal/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
9.
Cells ; 8(9)2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31510042

RESUMO

Bone marrow Mesenchymal Stem Cells (BM-MSCs), due to their strong protective and anti-inflammatory abilities, have been widely investigated in the context of several diseases for their possible therapeutic role, based on the release of a highly proactive secretome composed of soluble factors and Extracellular Vesicles (EVs). BM-MSC-EVs, in particular, convey many of the beneficial features of parental cells, including direct and indirect ß-amyloid degrading-activities, immunoregulatory and neurotrophic abilities. Therefore, EVs represent an extremely attractive tool for therapeutic purposes in neurodegenerative diseases, including Alzheimer's disease (AD). We examined the therapeutic potential of BM-MSC-EVs injected intracerebrally into the neocortex of APPswe/PS1dE9 AD mice at 3 and 5 months of age, a time window in which the cognitive behavioral phenotype is not yet detectable or has just started to appear. We demonstrate that BM-MSC-EVs are effective at reducing the Aß plaque burden and the amount of dystrophic neurites in both the cortex and hippocampus. The presence of Neprilysin on BM-MSC-EVs, opens the possibility of a direct ß-amyloid degrading action. Our results indicate a potential role for BM-MSC-EVs already in the early stages of AD, suggesting the possibility of intervening before overt clinical manifestations.


Assuntos
Vesículas Extracelulares/transplante , Células-Tronco Mesenquimais/metabolismo , Placa Amiloide/terapia , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Feminino , Hipocampo/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Camundongos Endogâmicos C57BL , Neuritos/metabolismo
10.
Int J Mol Sci ; 20(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491959

RESUMO

Growth hormone secretagogues (GHS) are a family of synthetic molecules, first discovered in the late 1970s for their ability to stimulate growth hormone (GH) release. Many effects of GHS are mediated by binding to GHS-R1a, the receptor for the endogenous hormone ghrelin, a 28-amino acid peptide isolated from the stomach. Besides endocrine functions, both ghrelin and GHS are endowed with some relevant extraendocrine properties, including stimulation of food intake, anticonvulsant and anti-inflammatory effects, and protection of muscle tissue in different pathological conditions. In particular, ghrelin and GHS inhibit cardiomyocyte and endothelial cell apoptosis and improve cardiac left ventricular function during ischemia-reperfusion injury. Moreover, in a model of cisplatin-induced cachexia, GHS protect skeletal muscle from mitochondrial damage and improve lean mass recovery. Most of these effects are mediated by GHS ability to preserve intracellular Ca2+ homeostasis. In this review, we address the muscle-specific protective effects of GHS mediated by Ca2+ regulation, but also highlight recent findings of their therapeutic potential in pathological conditions characterized by skeletal or cardiac muscle impairment.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Hormônio do Crescimento/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Secretagogos/farmacologia , Animais , Humanos
11.
Neurobiol Dis ; 132: 104568, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31394203

RESUMO

Chronic exposure to high circulating levels of glucocorticoids (GCs) may be a key risk factor for Alzheimer's Disease (AD) development and progression. In addition, hyper-activation of glucocorticoid receptors (GRs) induces brain alterations comparable to those produced by AD. In transgenic mouse models of AD, GCs increase the production of the most important and typical hallmarks of this dementia such as: Aß40, Aß42 and tau protein (both the total tau and its hyperphosphorylated isoforms). Moreover, GCs in brain are pivotal regulators of dendritic spine turnover and microglia activity, two phenomena strongly altered in AD. Although it is well-established that GCs primes the neuroinflammatory response in the brain to some stimuli, it is unknown whether or how GRs modulates dendritic spine plasticity and microglia activity in AD. In this study, we evaluated, using combined Golgi Cox and immunofluorescence techniques, the role of GR agonists and antagonists on dendritic spine plasticity and microglia activation in hippocampus of 3xTg-AD mice. We found that dexamethasone, an agonist of GRs, was able to significantly reduce dendritic spine density and induced proliferation and activation of microglia in CA1 region of hippocampus of 3xTg-AD mice at 6 and 10 months of age. On the contrary, the treatment with mifepristone, an antagonist of GRs, strongly enhanced dendritic spine density, decreased microglia density and improved the behavioural performance of 3xTg-AD mice. Additionally, primary microglial cells in vitro were directly activated by dexamethasone. Together, these data demonstrate that stress exacerbates AD and promotes a rapid progression of the pathology acting on both neurons and glial cells, supporting an important pro-inflammatory role of GC within CNS in AD. Consequently, these results further strengthen the need to test clinical interventions that correct GCs dysregulation as promising therapeutic strategy to delay the onset and slow down the progression of AD.


Assuntos
Doença de Alzheimer/metabolismo , Espinhas Dendríticas/patologia , Microglia/patologia , Plasticidade Neuronal/fisiologia , Receptores de Glucocorticoides/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Anti-Inflamatórios/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Dexametasona/farmacologia , Modelos Animais de Doenças , Antagonistas de Hormônios/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Presenilina-1/genética , Receptores de Glucocorticoides/efeitos dos fármacos , Proteínas tau/genética
12.
Bioessays ; 41(4): e1800199, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30919493

RESUMO

No cure yet exists for devastating Alzheimer's disease (AD), despite many years and humongous efforts to find efficacious pharmacological treatments. So far, neither designing drugs to disaggregate amyloid plaques nor tackling solely inflammation turned out to be decisive. Mesenchymal stem cells (MSCs) and, in particular, extracellular vesicles (EVs) originating from them could be proposed as an alternative, strategic approach to attack the pathology. Indeed, MSC-EVs-owing to their ability to deliver lipids/proteins/enzymes/microRNAs endowed with anti-inflammatory, amyloid-ß degrading, and neurotrophic activities-may be exploited as therapeutic tools to restore synaptic function, prevent neuronal death, and slow down memory impairment in AD. Herein the results presented in the most recently published studies on this topic are critically evaluated, providing a strong rationale for possible employment of MSC-EVs in AD. Also see the video abstract here https://youtu.be/tBtDbnlRUhg.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Vesículas Extracelulares/metabolismo , Inflamação/patologia , Células-Tronco Mesenquimais/metabolismo , Regeneração , Animais , Humanos
13.
J Mol Neurosci ; 66(4): 604-616, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30421280

RESUMO

The spreading of misfolded protein species contributes to the propagation of harmful mediators in proteinopathies, including Alzheimer's disease (AD). Cellular stress circumstances, such as abnormal protein accumulation or nutrient deprivation, elicit the secretion of soluble misprocessed proteins and insoluble aggregates via multiple mechanisms of unconventional secretion. One of them consists in the rerouting of autophagic vacuoles towards exocytosis, an unconventional type of autophagy mediated by caspase-3 activation under starvation. Ischemic injury is a starvation condition characterized by oxygen/nutrient deprivation, whose contribution in AD onset has definitely been endorsed. Thus, we investigated the effect of oxygen-glucose deprivation (OGD), an experimental condition mimicking cerebral ischemia, in search of alteration in Tau processing and secretion in hippocampal neurons primary cultures. Our results showed that OGD caused alterations in Tau phosphorylation and processing, paralleled by an induction of its secretion. Interestingly, together with caspase-3 activation, full-length (FL) and fragmented Tau forms were secreted by their own or through a heterogeneous population of microvesicles (MVs), including autophagosome marker LC3-positive vesicles. Accordingly, confocal microscopy revealed a partial colocalization of intracellular Tau and LC3. Summarizing, our findings indicate that OGD alters Tau intracellular levels and protein processing. Consequently, Tau clearance was stimulated through multiple mechanisms related to unconventional Tau secretion, including exophagy. However, the activation of this response represent a double edge sword, because it could contribute to the spreading of misfolded Tau, a neurodegeneration pathway in AD and other tauopathies.


Assuntos
Glucose/deficiência , Hipocampo/citologia , Neurônios/metabolismo , Oxigênio/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas tau/metabolismo , Animais , Hipóxia Celular , Células Cultivadas , Hipocampo/metabolismo , Transporte Proteico , Ratos , Ratos Sprague-Dawley
14.
PLoS One ; 9(5): e98344, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24859148

RESUMO

The prion protein (PrPC) is highly expressed within the nervous system. Similar to other GPI-anchored proteins, PrPC is found in lipid rafts, membrane domains enriched in cholesterol and sphingolipids. PrPC raft association, together with raft lipid composition, appears essential for the conversion of PrPC into the scrapie isoform PrPSc, and the development of prion disease. Controversial findings were reported on the nature of PrPC-containing rafts, as well as on the distribution of PrPC between rafts and non-raft membranes. We investigated PrPC/ganglioside relationships and their influence on PrPC localization in a neuronal cellular model, cerebellar granule cells. Our findings argue that in these cells at least two PrPC conformations coexist: in lipid rafts PrPC is present in the native folding (α-helical), stabilized by chemico-physical condition, while it is mainly present in other membrane compartments in a PrPSc-like conformation. We verified, by means of antibody reactivity and circular dichroism spectroscopy, that changes in lipid raft-ganglioside content alters PrPC conformation and interaction with lipid bilayers, without modifying PrPC distribution or cleavage. Our data provide new insights into the cellular mechanism of prion conversion and suggest that GM1-prion protein interaction at the cell surface could play a significant role in the mechanism predisposing to pathology.


Assuntos
Gangliosídeo G(M1) , Microdomínios da Membrana , Proteínas PrPC , Proteínas PrPSc , Proteólise , Animais , Gangliosídeo G(M1)/química , Gangliosídeo G(M1)/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Neurônios/metabolismo , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Estrutura Secundária de Proteína , Ratos , Ratos Sprague-Dawley
15.
J Mol Neurosci ; 51(2): 274-81, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23468184

RESUMO

Strategies involved in mesenchymal stem cell (MSC) differentiation toward neuronal cells for screening purposes are characterized by quality and quantity issues. Differentiated cells are often scarce with respect to starting undifferentiated population, and the differentiation process is usually quite long, with high risk of contamination and low yield efficiency. Here, we describe a novel simple method to induce direct differentiation of MSCs into neuronal cells, without neurosphere formation. Differentiated cells are characterized by clear morphological changes, expression of neuronal specific markers, showing functional response to depolarizing stimuli and electrophysiological properties similar to those of developing neurons. The method described here represents a valuable tool for future strategies aimed at personalized screening of therapeutic agents in vitro.


Assuntos
Adipócitos/citologia , Células-Tronco Mesenquimais/citologia , Neurogênese , Neurônios/citologia , Cultura Primária de Células/métodos , Adipócitos/metabolismo , Animais , Biomarcadores/metabolismo , Cálcio/metabolismo , Feminino , Células-Tronco Mesenquimais/metabolismo , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
16.
Mol Cell Neurosci ; 49(4): 395-405, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22388097

RESUMO

Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent stem cells endowed with neurotrophic potential combined with immunological properties, making them a promising therapeutic tool for neurodegenerative disorders. However, the mechanisms through which MSCs promote the neurological recovery following injury or inflammation are still largely unknown, although cell replacement and paracrine mechanisms have been hypothesized. In order to find out what are the mechanisms of the trophic action of MSCs, as compared to glial cells, on CNS neurons, we set up a co-culture system where rat MSCs (or cortical astrocytes) were used as a feeding layer for hippocampal neurons without any direct contact between the two cell types. The analysis of hippocampal synaptogenesis, synaptic vesicle recycling and electrical activity show that MSCs were capable to support morphological and functional neuronal differentiation. The proliferation of hippocampal glial cells induced by the release of bioactive substance(s) from MSCs was necessary for neuronal survival. Furthermore, MSCs selectively increased hippocampal GABAergic pre-synapses. This effect was paralleled with a higher expression of the potassium/chloride KCC2 co-transporter and increased frequency and amplitude of mIPSCs and sIPSCs. The enhancement of GABA synapses was impaired by the treatment with K252a, a Trk/neurotrophin receptor blocker, and by TrkB receptor bodies hence suggesting the involvement of BDNF as a mediator of such effects. The results obtained here indicate that MSC-secreted factors induce glial-dependent neuronal survival and trigger an augmented GABAergic transmission in hippocampal cultures, highlighting a new effect by which MSCs could promote CNS repair. Our results suggest that MSCs may be useful in those neurological disorders characterized by an impairment of excitation versus inhibition balance.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Western Blotting , Diferenciação Celular/fisiologia , Técnicas de Cocultura , Ensaio de Imunoadsorção Enzimática , Células Alimentadoras , Imunofluorescência , Hipocampo/citologia , Hipocampo/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Neurônios/citologia , Técnicas de Patch-Clamp , Ratos , Ácido gama-Aminobutírico/metabolismo
17.
Eur J Pharmacol ; 670(1): 130-6, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21914437

RESUMO

It has been reported that ghrelin exerts anticonvulsive effects in models of epilepsy. In this study we aimed to characterize the anticonvulsive activity of ghrelin and other growth hormone secretagogue receptor 1a (GHSR(1a)) ligands in rats exposed to status epilepticus induced by pilocarpine or kainate. Firstly, in three independent experiments, before receiving pilocarpine (380 mg/kg, i.p.), rats were pretreated with one among ghrelin (1.5mg/kg), desacyl-ghrelin (1.5mg/kg), hexarelin (330 µg/kg), EP-80317 (330 µg/kg), JMV-1843 (330 µg/kg), JMV-2959 (330 µg/kg) or saline. Secondly, in the fourth experiment, rats were pretreated with i.p. ghrelin, desacyl-ghrelin, hexarelin, EP-80317 or saline, followed by kainate (15 mg/kg, i.p.). We evaluated: induction of generalized seizures, latency to generalized seizures, status epilepticus, latency to status epilepticus (the time lag between the first tonic-clonic convulsion and the switch to continuous seizures) and mortality. In the pilocarpine model, 60% of rats pretreated with EP-80317 (P<0.05) showed no seizure. Hexarelin and EP-80317 were both able to prevent progression to status epilepticus in pilocarpine-treated rats (P<0.05). When status epilepticus was induced by kainate, seizures developed with few exceptions. However, latency to status epilepticus was significantly (P<0.01) longer in rats pretreated with desacyl-ghrelin, whereas hexarelin and EP-80317 did not display any effect. Almost all GHSR(1a) ligands prevented pilocarpine-induced mortality, which was observed only in rats pretreated with saline or JMV-2959. After kainate administration, all rats survived to status epilepticus. These findings demonstrate that desacyl-ghrelin, hexarelin and EP-80317 but not other GHSR(1a) ligands display relevant anticonvulsive properties in models of limbic seizures.


Assuntos
Peptídeos/farmacologia , Estado Epiléptico/tratamento farmacológico , Animais , Modelos Animais de Doenças , Grelina/farmacologia , Grelina/uso terapêutico , Ácido Caínico/farmacologia , Masculino , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Peptídeos/uso terapêutico , Pilocarpina/farmacologia , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Estado Epiléptico/induzido quimicamente
18.
Traffic ; 8(2): 142-53, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17241445

RESUMO

Botulinum neurotoxins (BoNTs), proteases specific for the SNARE proteins, are used to study the molecular machinery supporting exocytosis and are used to treat human diseases characterized by cholinergic hyperactivity. The recent extension of the use of BoNTs to central nervous system (CNS) pathologies prompted the study of their traffic in central neurons. We used fluorescent BoNT/A and BoNT/E to study the penetration, the translocation and the catalytic action of these toxins in excitatory and inhibitory neurons. We show that BoNT/A and BoNT/E, besides preferentially inhibiting synaptic vesicle recycling at glutamatergic relative to Gamma-aminobutyric acid (GABA)-ergic neurons, are more efficient in impairing the release of excitatory than inhibitory neurotransmitter from brain synaptosomes. This differential effect does not result from a defective penetration of the toxin in line with the presence of the BoNT/A receptor, synaptic vesicle protein 2 (SV2), in both types of neurons. Interestingly, exogenous expression of SNAP-25 in GABAergic neurons confers sensitivity to BoNT/A. These results indicate that the expression of the toxin substrate, and not the toxin penetration, most likely accounts for the distinct effects of the two neurotoxins at the two types of terminals and support the use of BoNTs for the therapy of CNS diseases caused by the altered activity of selected neuronal populations.


Assuntos
Toxinas Botulínicas Tipo A/farmacocinética , Toxinas Botulínicas/farmacocinética , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Animais , Ácido Aspártico/metabolismo , Transporte Biológico Ativo , Toxinas Botulínicas/farmacologia , Toxinas Botulínicas Tipo A/farmacologia , Células Cultivadas , Córtex Cerebral/citologia , Exocitose/efeitos dos fármacos , Hipocampo/citologia , Masculino , Ratos , Ratos Sprague-Dawley , Vesículas Sinápticas/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptossomos/metabolismo , Ácido gama-Aminobutírico/metabolismo
19.
Trends Cell Biol ; 14(3): 133-40, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15003622

RESUMO

Over the past decade, evidence has accumulated indicating that, during development, the construction of synapses--the sites of communication between neurons--might rely on the utilization of preassembled sets of synaptic proteins, which have already accumulated in the axon and are highly mobile, before getting recruited to the sites of contact with the postsynaptic neuron. In this review, we discuss evidence from most recent publications pointing to the existence of active vesicle traffic and turnover in developing neurons, which lead to the construction of new synaptic sites.


Assuntos
Neurônios/citologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Transporte Biológico , Membrana Celular/metabolismo , Neurotransmissores/metabolismo
20.
Neuron ; 41(4): 599-610, 2004 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-14980208

RESUMO

SNAP-25 is a component of the SNARE complex implicated in synaptic vesicle exocytosis. In this study, we demonstrate that hippocampal GABAergic synapses, both in culture and in brain, lack SNAP-25 and are resistant to the action of botulinum toxins type A and E, which cleave this SNARE protein. Relative to glutamatergic neurons, which express SNAP-25, GABAergic cells were characterized by a higher calcium responsiveness to depolarization. Exogenous expression of SNAP-25 in GABAergic interneurons lowered calcium responsiveness, and SNAP-25 silencing in glutamatergic neurons increased calcium elevations evoked by depolarization. Expression of SNAP-25(1-197) but not of SNAP-25(1-180) inhibited calcium responsiveness, pointing to the involvement of the 180-197 residues in the observed function. These data indicate that SNAP-25 is crucial for the regulation of intracellular calcium dynamics and, possibly, of network excitability. SNAP-25 is therefore a multifunctional protein that participates in exocytotic function both at the mechanistic and at the regulatory level.


Assuntos
Sinalização do Cálcio/fisiologia , Ácido Glutâmico/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Sequência de Aminoácidos/fisiologia , Animais , Toxinas Botulínicas/farmacologia , Toxinas Botulínicas Tipo A/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Exocitose/efeitos dos fármacos , Exocitose/fisiologia , Feto , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Imuno-Histoquímica , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Proteína 25 Associada a Sinaptossoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA