Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Death Dis ; 6: e1739, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25950469

RESUMO

Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined. To fill this gap, we investigated the molecular processes underlying neuronal injury in a mouse model of severe neonatal jaundice, which develops hyperbilirubinemia as a consequence of a null mutation in the Ugt1 gene. These mutant mice show cerebellar abnormalities and hypoplasia, neuronal cell death and die shortly after birth because of bilirubin neurotoxicity. To identify protein changes associated with bilirubin-induced cell death, we performed proteomic analysis of cerebella from Ugt1 mutant and wild-type mice. Proteomic data pointed-out to oxidoreductase activities or antioxidant processes as important intracellular mechanisms altered during bilirubin-induced neurotoxicity. In particular, they revealed that down-representation of DJ-1, superoxide dismutase, peroxiredoxins 2 and 6 was associated with hyperbilirubinemia in the cerebellum of mutant mice. Interestingly, the reduction in protein levels seems to result from post-translational mechanisms because we did not detect significant quantitative differences in the corresponding mRNAs. We also observed an increase in neuro-specific enolase 2 both in the cerebellum and in the serum of mutant mice, supporting its potential use as a biomarker of bilirubin-induced neurological damage. In conclusion, our data show that different protective mechanisms fail to contrast oxidative burst in bilirubin-affected brain regions, ultimately leading to neurodegeneration.


Assuntos
Antioxidantes/metabolismo , Bilirrubina/toxicidade , Cerebelo/metabolismo , Glucuronosiltransferase/metabolismo , Neurônios/metabolismo , Animais , Bilirrubina/sangue , Morte Celular/fisiologia , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/enzimologia , Modelos Animais de Doenças , Glucuronosiltransferase/deficiência , Glucuronosiltransferase/genética , Hiperbilirrubinemia/metabolismo , Hiperbilirrubinemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Oxirredução
2.
Diabetologia ; 55(3): 773-82, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22159911

RESUMO

AIMS/HYPOTHESIS: Insulin effects reportedly involve reactive oxygen species (ROS) and oxidative stress in vitro, but skeletal muscle oxidative stress is an emerging negative regulator of insulin action following high-fat feeding. NEFA may enhance oxidative stress and insulin resistance. We investigated the acute impact of insulin with or without NEFA elevation on muscle ROS generation and insulin signalling, and the potential association with altered muscle mitochondrial function. METHODS: We used hyperinsulinaemic-euglycaemic clamping, 150 min, without or with lipid infusion to modulate plasma NEFA concentration in lean rats. RESULTS: Insulin and glucose (Ins) infusion selectively enhanced xanthine oxidase-dependent muscle ROS generation. Ins with lipid infusion (Ins+NEFA) lowered whole-body glucose disposal and muscle insulin signalling, and these effects were associated with high muscle mitochondrial ROS generation and activation of the proinflammatory nuclear factor-κB inhibitor (IκB)-nuclear factor-κB (NFκB) pathway. Antioxidant infusion prevented NEFA-induced systemic insulin resistance and changes in muscle mitochondrial ROS generation, IκB-NFκB pathway and insulin signalling. Changes in insulin sensitivity and signalling were independent of changes in mitochondrial enzyme activity and ATP production, which, in turn, were not impaired by changes in ROS generation under any condition. CONCLUSIONS/INTERPRETATION: Acute muscle insulin effects include enhanced ROS generation through xanthine oxidase. Additional NEFA elevation enhances mitochondrial ROS generation, activates IκB-NFκB and reduces insulin signalling. These alterations are not associated with acute reductions in mitochondrial enzyme activity and ATP production, and are reversed by antioxidant infusion. Thus, NEFA acutely cause systemic and muscle insulin resistance by enhancing muscle oxidative stress through mitochondrial ROS generation and IκB-NFκB activation.


Assuntos
Ácidos Graxos não Esterificados/metabolismo , Proteínas I-kappa B/metabolismo , Resistência à Insulina , Mitocôndrias Musculares/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos não Esterificados/administração & dosagem , Ácidos Graxos não Esterificados/efeitos adversos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Infusões Intravenosas , Insulina Regular Humana/administração & dosagem , Insulina Regular Humana/farmacologia , Masculino , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Xantina Oxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA