Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 403(1-2): 159-67, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25682169

RESUMO

Recently, the consequences of diabetes on the central nervous system (CNS) have received great attention. However, the mechanisms by which hyperglycemia affects the central nervous system remain poorly understood. In addition, recent studies have shown that hyperglycemia induces oxidative damage in the adult rat brain. In this regard, no study has assessed oxidative stress as a possible mechanism that affects the brain normal function in neonatal hyperglycemic rats. Thus, the present study aimed to investigate whether neonatal hyperglycemia elicits oxidative stress in the brain of neonate rats subjected to a streptozotocin-induced neonatal hyperglycemia model (5-day-old rats). The activities of glucose-6-phosphate-dehydrogenase (G6PD), 6-phosphogluconate-dehydrogenase (6-PGD), NADPH oxidase (Nox), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPx), the production of superoxide anion, the thiobarbituric acid-reactive substances (TBA-RS), and the protein carbonyl content were measured. Neonatal hyperglycemic rats presented increased activities of G6PD, 6PGD, and Nox, which altogether may be responsible for the enhanced production of superoxide radical anion that was observed. The enhanced antioxidant enzyme activities (SOD, CAT, and GSHPx) that were observed in neonatal hyperglycemic rats, which may be caused by a rebound effect of oxidative stress, were not able to hinder the observed lipid peroxidation (TBA-RS) and protein damage in the brain. Consequently, these results suggest that oxidative stress could represent a mechanism that explains the harmful effects of neonatal hyperglycemia on the CNS.


Assuntos
Encéfalo/enzimologia , Encéfalo/patologia , Hiperglicemia/patologia , NADPH Oxidases/metabolismo , Estresse Oxidativo , Via de Pentose Fosfato , Animais , Animais Recém-Nascidos , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Carbonilação Proteica , Ratos Wistar , Superóxidos/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA