Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38400271

RESUMO

The electrical energy supply relies on the satisfactory operation of insulators. The ultrasound recorded from insulators in different conditions has a time series output, which can be used to classify faulty insulators. The random convolutional kernel transform (Rocket) algorithms use convolutional filters to extract various features from the time series data. This paper proposes a combination of Rocket algorithms, machine learning classifiers, and empirical mode decomposition (EMD) methods, such as complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), empirical wavelet transform (EWT), and variational mode decomposition (VMD). The results show that the EMD methods, combined with MiniRocket, significantly improve the accuracy of logistic regression in insulator fault diagnosis. The proposed strategy achieves an accuracy of 0.992 using CEEMDAN, 0.995 with EWT, and 0.980 with VMD. These results highlight the potential of incorporating EMD methods in insulator failure detection models to enhance the safety and dependability of power systems.

2.
Sensors (Basel) ; 23(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631586

RESUMO

Electroencephalography (EEG) is an exam widely adopted to monitor cerebral activities regarding external stimuli, and its signals compose a nonlinear dynamical system. There are many difficulties associated with EEG analysis. For example, noise can originate from different disorders, such as muscle or physiological activity. There are also artifacts that are related to undesirable signals during EEG recordings, and finally, nonlinearities can occur due to brain activity and its relationship with different brain regions. All these characteristics make data modeling a difficult task. Therefore, using a combined approach can be the best solution to obtain an efficient model for identifying neural data and developing reliable predictions. This paper proposes a new hybrid framework combining stacked generalization (STACK) ensemble learning and a differential-evolution-based algorithm called Adaptive Differential Evolution with an Optional External Archive (JADE) to perform nonlinear system identification. In the proposed framework, five base learners, namely, eXtreme Gradient Boosting, a Gaussian Process, Least Absolute Shrinkage and Selection Operator, a Multilayer Perceptron Neural Network, and Support Vector Regression with a radial basis function kernel, are trained. The predictions from all these base learners compose STACK's layer-0 and are adopted as inputs of the Cubist model, whose hyperparameters were obtained by JADE. The model was evaluated for decoding the electroencephalography signal response to wrist joint perturbations. The variance accounted for (VAF), root-mean-squared error (RMSE), and Friedman statistical test were used to validate the performance of the proposed model and compare its results with other methods in the literature, including the base learners. The JADE-STACK model outperforms the other models in terms of accuracy, being able to explain around, as an average of all participants, 94.50% and 67.50% (standard deviations of 1.53 and 7.44, respectively) of the data variability for one step ahead and three steps ahead, which makes it a suitable approach to dealing with nonlinear system identification. Also, the improvement over state-of-the-art methods ranges from 0.6% to 161% and 43.34% for one step ahead and three steps ahead, respectively. Therefore, the developed model can be viewed as an alternative and additional approach to well-established techniques for nonlinear system identification once it can achieve satisfactory results regarding the data variability explanation.


Assuntos
Algoritmos , Aprendizagem , Humanos , Artefatos , Eletroencefalografia , Aprendizado de Máquina
3.
Sensors (Basel) ; 23(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37514677

RESUMO

Due to its capacity to gather vast, high-level data about human activity from wearable or stationary sensors, human activity recognition substantially impacts people's day-to-day lives. Multiple people and things may be seen acting in the video, dispersed throughout the frame in various places. Because of this, modeling the interactions between many entities in spatial dimensions is necessary for visual reasoning in the action recognition task. The main aim of this paper is to evaluate and map the current scenario of human actions in red, green, and blue videos, based on deep learning models. A residual network (ResNet) and a vision transformer architecture (ViT) with a semi-supervised learning approach are evaluated. The DINO (self-DIstillation with NO labels) is used to enhance the potential of the ResNet and ViT. The evaluated benchmark is the human motion database (HMDB51), which tries to better capture the richness and complexity of human actions. The obtained results for video classification with the proposed ViT are promising based on performance metrics and results from the recent literature. The results obtained using a bi-dimensional ViT with long short-term memory demonstrated great performance in human action recognition when applied to the HMDB51 dataset. The mentioned architecture presented 96.7 ± 0.35% and 41.0 ± 0.27% in terms of accuracy (mean ± standard deviation values) in the train and test phases of the HMDB51 dataset, respectively.


Assuntos
Aprendizado Profundo , Humanos , Redes Neurais de Computação , Aprendizado de Máquina Supervisionado , Atividades Humanas , Movimento (Física)
4.
Sensors (Basel) ; 23(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37447968

RESUMO

Disruptive failures threaten the reliability of electric supply in power branches, often indicated by the rise of leakage current in distribution insulators. This paper presents a novel, hybrid method for fault prediction based on the time series of the leakage current of contaminated insulators. In a controlled high-voltage laboratory simulation, 15 kV-class insulators from an electrical power distribution network were exposed to increasing contamination in a salt chamber. The leakage current was recorded over 28 h of effective exposure, culminating in a flashover in all considered insulators. This flashover event served as the prediction mark that this paper proposes to evaluate. The proposed method applies the Christiano-Fitzgerald random walk (CFRW) filter for trend decomposition and the group data-handling (GMDH) method for time series prediction. The CFRW filter, with its versatility, proved to be more effective than the seasonal decomposition using moving averages in reducing non-linearities. The CFRW-GMDH method, with a root-mean-squared error of 3.44×10-12, outperformed both the standard GMDH and long short-term memory models in fault prediction. This superior performance suggested that the CFRW-GMDH method is a promising tool for predicting faults in power grid insulators based on leakage current data. This approach can provide power utilities with a reliable tool for monitoring insulator health and predicting failures, thereby enhancing the reliability of the power supply.


Assuntos
Sistemas Computacionais , Contaminação de Medicamentos , Reprodutibilidade dos Testes , Simulação por Computador , Fontes de Energia Elétrica
5.
Sensors (Basel) ; 23(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37177716

RESUMO

The predictive maintenance of electrical machines is a critical issue for companies, as it can greatly reduce maintenance costs, increase efficiency, and minimize downtime. In this paper, the issue of predicting electrical machine failures by predicting possible anomalies in the data is addressed through time series analysis. The time series data are from a sensor attached to an electrical machine (motor) measuring vibration variations in three axes: X (axial), Y (radial), and Z (radial X). The dataset is used to train a hybrid convolutional neural network with long short-term memory (CNN-LSTM) architecture. By employing quantile regression at the network output, the proposed approach aims to manage the uncertainties present in the data. The application of the hybrid CNN-LSTM attention-based model, combined with the use of quantile regression to capture uncertainties, yielded superior results compared to traditional reference models. These results can benefit companies by optimizing their maintenance schedules and improving the overall performance of their electric machines.

6.
Sensors (Basel) ; 23(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36991913

RESUMO

Insulators installed outdoors are vulnerable to the accumulation of contaminants on their surface, which raise their conductivity and increase leakage current until a flashover occurs. To improve the reliability of the electrical power system, it is possible to evaluate the development of the fault in relation to the increase in leakage current and thus predict whether a shutdown may occur. This paper proposes the use of empirical wavelet transform (EWT) to reduce the influence of non-representative variations and combines the attention mechanism with a long short-term memory (LSTM) recurrent network for prediction. The Optuna framework has been applied for hyperparameter optimization, resulting in a method called optimized EWT-Seq2Seq-LSTM with attention. The proposed model had a 10.17% lower mean square error (MSE) than the standard LSTM and a 5.36% lower MSE than the model without optimization, showing that the attention mechanism and hyperparameter optimization is a promising strategy.

7.
MethodsX ; 8: 101574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004208

RESUMO

Support Vector Machines (SVMs) technique for achieving classifiers and regressors. However, to obtain models with high accuracy and low complexity, it is necessary to define the kernel parameters as well as the parameters of the training model, which are called hyperparameters. The challenge of defining the more suitable value to hyperparameters is called the Parameter Selection Problem (PSP). However, minimizing the complexity and maximizing the generalization capacity of the SVMs are conflicting criteria. Therefore, we propose the Nature Inspired Optimization Tools for SVMs (NIOTS) that offers a method to automate the search process for the best possible solution for the PSP, allowing the user to quickly obtain several sets of good solutions and choose the one most appropriate for his specific problem.•The PSP has been modeled as a Multiobjective Optimization Problem (MOP) with two objectives: (1) good precision and (2) low complexity (low number of support vectors).•The user can evaluate multiple solutions included in the Pareto front, in terms of precision and low complexity of the model.•Apart from the Adaptive Parameter with Mutant Tournament Multiobjective Differential Evolution (APMT-MODE), the user can choose other metaheuristics and also among several kernel options.

8.
J Biomed Inform ; 111: 103575, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32976990

RESUMO

Epidemiological time series forecasting plays an important role in health public systems, due to its ability to allow managers to develop strategic planning to avoid possible epidemics. In this paper, a hybrid learning framework is developed to forecast multi-step-ahead (one, two, and three-month-ahead) meningitis cases in four states of Brazil. First, the proposed approach applies an ensemble empirical mode decomposition (EEMD) to decompose the data into intrinsic mode functions and residual components. Then, each component is used as the input of five different forecasting models, and, from there, forecasted results are obtained. Finally, all combinations of models and components are developed, and for each case, the forecasted results are weighted integrated (WI) to formulate a heterogeneous ensemble forecaster for the monthly meningitis cases. In the final stage, a multi-objective optimization (MOO) using the Non-Dominated Sorting Genetic Algorithm - version II is employed to find a set of candidates' weights, and then the Technique for Order of Preference by similarity to Ideal Solution (TOPSIS) is applied to choose the adequate set of weights. Next, the most adequate model is the one with the best generalization capacity out-of-sample in terms of performance criteria including mean absolute error (MAE), relative root mean squared error (RRMSE), and symmetric mean absolute percentage error (sMAPE). By using MOO, the intention is to enhance the performance of the forecasting models by improving simultaneously their accuracy and stability measures. To access the model's performance, comparisons based on metrics are conducted with: (i) EEMD, heterogeneous ensemble integrated by direct strategy, or simple sum; (ii) EEMD, homogeneous ensemble of components WI; (iii) models without signal decomposition. At this stage, MAE, RRMSE, and sMAPE criteria as well as Diebold-Mariano statistical test are adopted. In all twelve scenarios, the proposed framework was able to perform more accurate and stable forecasts, which showed, on 89.17% of the cases, that the errors of the proposed approach are statistically lower than other approaches. These results showed that combining EEMD, heterogeneous ensemble and WI with weights obtained by optimization can develop precise and stable forecasts. The modeling developed in this paper is promising and can be used by managers to support decision making.


Assuntos
Epidemias , Meningite , Brasil , Previsões , Humanos , Meningite/diagnóstico , Meningite/epidemiologia
9.
Chaos Solitons Fractals ; 139: 110027, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32834591

RESUMO

The novel coronavirus disease (COVID-19) is a public health problem once according to the World Health Organization up to June 24th, 2020, more than 9.1 million people were infected, and more than 470 thousand have died worldwide. In the current scenario, the Brazil and the United States of America present a high daily incidence of new cases and deaths. Therefore, it is important to forecast the number of new cases in a time window of one week, once this can help the public health system developing strategic planning to deals with the COVID-19. The application of the forecasting artificial intelligence (AI) models has the potential of deal with dynamical behavior of time-series like of COVID-19. In this paper, Bayesian regression neural network, cubist regression, k-nearest neighbors, quantile random forest, and support vector regression, are used stand-alone, and coupled with the recent pre-processing variational mode decomposition (VMD) employed to decompose the time series into several intrinsic mode functions. All AI techniques are evaluated in the task of time-series forecasting with one, three, and six-days-ahead the cumulative COVID-19 cases in five Brazilian and American states, with a high number of cases up to April 28th, 2020. Previous cumulative COVID-19 cases and exogenous variables as daily temperature and precipitation were employed as inputs for all forecasting models. The models' effectiveness are evaluated based on the performance criteria. In general, the hybridization of VMD outperformed single forecasting models regarding the accuracy, specifically when the horizon is six-days-ahead, the hybrid VMD-single models achieved better accuracy in 70% of the cases. Regarding the exogenous variables, the importance ranking as predictor variables is, from the upper to the lower, past cases, temperature, and precipitation. Therefore, due to the efficiency of evaluated models to forecasting cumulative COVID-19 cases up to six-days-ahead, the adopted models can be recommended as a promising models for forecasting and be used to assist in the development of public policies to mitigate the effects of COVID-19 outbreak.

10.
Chaos Solitons Fractals ; 135: 109853, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32501370

RESUMO

The new Coronavirus (COVID-19) is an emerging disease responsible for infecting millions of people since the first notification until nowadays. Developing efficient short-term forecasting models allow forecasting the number of future cases. In this context, it is possible to develop strategic planning in the public health system to avoid deaths. In this paper, autoregressive integrated moving average (ARIMA), cubist regression (CUBIST), random forest (RF), ridge regression (RIDGE), support vector regression (SVR), and stacking-ensemble learning are evaluated in the task of time series forecasting with one, three, and six-days ahead the COVID-19 cumulative confirmed cases in ten Brazilian states with a high daily incidence. In the stacking-ensemble learning approach, the CUBIST regression, RF, RIDGE, and SVR models are adopted as base-learners and Gaussian process (GP) as meta-learner. The models' effectiveness is evaluated based on the improvement index, mean absolute error, and symmetric mean absolute percentage error criteria. In most of the cases, the SVR and stacking-ensemble learning reach a better performance regarding adopted criteria than compared models. In general, the developed models can generate accurate forecasting, achieving errors in a range of 0.87%-3.51%, 1.02%-5.63%, and 0.95%-6.90% in one, three, and six-days-ahead, respectively. The ranking of models, from the best to the worst regarding accuracy, in all scenarios is SVR, stacking-ensemble learning, ARIMA, CUBIST, RIDGE, and RF models. The use of evaluated models is recommended to forecasting and monitor the ongoing growth of COVID-19 cases, once these models can assist the managers in the decision-making support systems.

11.
Ecotoxicol Environ Saf ; 128: 52-60, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26890190

RESUMO

The application of molecular descriptors in describing Quantitative Structure Property Relationships (QSPR) for the estimation of vapor pressure (VP) of pesticides is of ongoing interest. In this study, QSPR models were developed using multiple linear regression (MLR) methods to predict the vapor pressure values of 162 pesticides. Several feature selection methods, namely the replacement method (RM), genetic algorithms (GA), stepwise regression (SR) and forward selection (FS), were used to select the most relevant molecular descriptors from a pool of variables. The optimum subset of molecular descriptors was used to build a QSPR model to estimate the vapor pressures of the selected pesticides. The Replacement Method improved the predictive ability of vapor pressures and was more reliable for the feature selection of these selected pesticides. The results provided satisfactory MLR models that had a satisfactory predictive ability, and will be important for predicting vapor pressure values for compounds with unknown values. This study may open new opportunities for designing and developing new pesticide.


Assuntos
Praguicidas/química , Relação Quantitativa Estrutura-Atividade , Pressão de Vapor , Modelos Lineares , Modelos Químicos
12.
IEEE Trans Syst Man Cybern B Cybern ; 36(6): 1407-16, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17186816

RESUMO

In this correspondence, an approach based on coevolutionary particle swarm optimization to solve constrained optimization problems formulated as min-max problems is presented. In standard or canonical particle swarm optimization (PSO), a uniform probability distribution is used to generate random numbers for the accelerating coefficients of the local and global terms. We propose a Gaussian probability distribution to generate the accelerating coefficients of PSO. Two populations of PSO using Gaussian distribution are used on the optimization algorithm that is tested on a suite of well-known benchmark constrained optimization problems. Results have been compared with the canonical PSO (constriction factor) and with a coevolutionary genetic algorithm. Simulation results show the suitability of the proposed algorithm in terms of effectiveness and robustness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA