Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(9): 3614-3623, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30755533

RESUMO

Despite therapeutic advances, heart failure is the major cause of morbidity and mortality worldwide, but why cardiac regenerative capacity is lost in adult humans remains an enigma. Cardiac regenerative capacity widely varies across vertebrates. Zebrafish and newt hearts regenerate throughout life. In mice, this ability is lost in the first postnatal week, a period physiologically similar to thyroid hormone (TH)-regulated metamorphosis in anuran amphibians. We thus assessed heart regeneration in Xenopus laevis before, during, and after TH-dependent metamorphosis. We found that tadpoles display efficient cardiac regeneration, but this capacity is abrogated during the metamorphic larval-to-adult switch. Therefore, we examined the consequence of TH excess and deprivation on the efficiently regenerating tadpole heart. We found that either acute TH treatment or blocking TH production before resection significantly but differentially altered gene expression and kinetics of extracellular matrix components deposition, and negatively impacted myocardial wall closure, both resulting in an impeded regenerative process. However, neither treatment significantly influenced DNA synthesis or mitosis in cardiac tissue after amputation. Overall, our data highlight an unexplored role of TH availability in modulating the cardiac regenerative outcome, and present X. laevis as an alternative model to decipher the developmental switches underlying stage-dependent constraint on cardiac regeneration.


Assuntos
Insuficiência Cardíaca/prevenção & controle , Regeneração/genética , Hormônios Tireóideos/metabolismo , Xenopus laevis/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Insuficiência Cardíaca/fisiopatologia , Humanos , Larva/genética , Larva/crescimento & desenvolvimento , Metamorfose Biológica/genética , Camundongos , Salamandridae/genética , Salamandridae/crescimento & desenvolvimento , Hormônios Tireóideos/administração & dosagem , Hormônios Tireóideos/genética , Xenopus laevis/crescimento & desenvolvimento , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
2.
Cell Biosci ; 8: 31, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713454

RESUMO

We recently used an endoscopy-based resection method to explore the consequences of cardiac injury in adult Xenopus laevis, obtaining the result that the adult Xenopus heart is unable to regenerate. At 11 months post-amputation, cellular and biological marks of scarring persisted. We thus concluded that, contrary to urodeles and teleosts, adult anurans share a cardiac injury outcome similar to adult mammals. However, in their work published in this journal on the 13 December 2017, Liao et al. showed that the adult Xenopus tropicalis heart is capable of efficient, almost scar free regeneration, a result at odds with our previous observation. These findings contrast with and challenge the outcome of adult heart repair following injury in Xenopus species. Here we discuss the question of the intrinsic cardiac regenerative properties of an adult heart in anuran amphibians.

3.
Cold Spring Harb Protoc ; 2017(11): pdb.prot099366, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093206

RESUMO

In vivo gene transfer systems are important to study foreign gene expression and promoter regulation in an organism, with the benefit of exploring this in an integrated environment. Direct injection of plasmids encoding exogenous promoters and genes into muscle has numerous advantages: the protocol is easy, efficient, and shows time-persistent plasmid expression in transfected muscular cells. After injecting naked-DNA plasmids into tadpole tail muscle, transgene expression is strong, reproducible, and correlates with the amount of DNA injected. Moreover, expression is stable as long as the tadpoles remain, or are maintained, in premetamorphic stages. By directly expressing genes and regulated promoters in Xenopus tadpole muscle in vivo, one can exploit the powerful experimental advantages of gene transfer systems in an intact, physiologically normal animal.


Assuntos
DNA/genética , Larva , Músculos , Plasmídeos , Cauda , Transfecção/métodos , Xenopus/genética , Animais , Expressão Gênica , Transgenes
4.
PLoS One ; 12(3): e0173418, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278282

RESUMO

Models of cardiac repair are needed to understand mechanisms underlying failure to regenerate in human cardiac tissue. Such studies are currently dominated by the use of zebrafish and mice. Remarkably, it is between these two evolutionary separated species that the adult cardiac regenerative capacity is thought to be lost, but causes of this difference remain largely unknown. Amphibians, evolutionary positioned between these two models, are of particular interest to help fill this lack of knowledge. We thus developed an endoscopy-based resection method to explore the consequences of cardiac injury in adult Xenopus laevis. This method allowed in situ live heart observation, standardised tissue amputation size and reproducibility. During the first week following amputation, gene expression of cell proliferation markers remained unchanged, whereas those relating to sarcomere organisation decreased and markers of inflammation, fibrosis and hypertrophy increased. One-month post-amputation, fibrosis and hypertrophy were evident at the injury site, persisting through 11 months. Moreover, cardiomyocyte sarcomere organisation deteriorated early following amputation, and was not completely recovered as far as 11 months later. We conclude that the adult Xenopus heart is unable to regenerate, displaying cellular and molecular marks of scarring. Our work suggests that, contrary to urodeles and teleosts, with the exception of medaka, adult anurans share a cardiac injury outcome similar to adult mammals. This observation is at odds with current hypotheses that link loss of cardiac regenerative capacity with acquisition of homeothermy.


Assuntos
Endoscopia , Sarcômeros/patologia , Cirurgia Assistida por Computador/efeitos adversos , Cirurgia Torácica , Xenopus laevis , Amputação Cirúrgica/efeitos adversos , Animais , Biomarcadores/metabolismo , Feminino , Fibrose , Sarcômeros/metabolismo , Fatores de Tempo , Regulação para Cima
5.
PLoS One ; 9(1): e85104, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465486

RESUMO

Though pluripotency is well characterized in mammals, many questions remain to be resolved regarding its evolutionary history. A necessary prerequisite for addressing this issue is to determine the phylogenetic distributions and orthology relationships of the transcription factor families sustaining or modulating this property. In mammals, the NANOG homeodomain transcription factor is one of the core players in the pluripotency network. However, its evolutionary history has not been thoroughly studied, hindering the interpretation of comparative studies. To date, the NANOG family was thought to be monogenic, with numerous pseudogenes described in mammals, including a tandem duplicate in Hominidae. By examining a wide-array of craniate genomes, we provide evidence that the NANOG family arose at the latest in the most recent common ancestor of osteichthyans and that NANOG genes are frequently found as tandem duplicates in sarcopterygians and as a single gene in actinopterygians. Their phylogenetic distribution is thus reminiscent of that recently shown for Class V POU paralogues, another key family of pluripotency-controlling factors. However, while a single ancestral duplication has been reported for the Class V POU family, we suggest that multiple independent duplication events took place during evolution of the NANOG family. These multiple duplications could have contributed to create a layer of complexity in the control of cell competence and pluripotency, which could explain the discrepancies relative to the functional evolution of this important gene family. Further, our analysis does not support the hypothesis that loss of NANOG and emergence of the preformation mode of primordial germ cell specification are causally linked. Our study therefore argues for the need of further functional comparisons between NANOG paralogues, notably regarding the novel duplicates identified in sauropsids and non-eutherian mammals.


Assuntos
Evolução Molecular , Proteínas de Homeodomínio/genética , Animais , Loci Gênicos , Humanos , Proteína Homeobox Nanog , Filogenia , Homologia de Sequência de Aminoácidos , Sintenia/genética
6.
Biol Aujourdhui ; 207(3): 201-17, 2013.
Artigo em Francês | MEDLINE | ID: mdl-24330973

RESUMO

Pluripotency is a transitory state during vertebrate development. A pluripotent cell can theoretically acquire all cell fates of the organism. During ontogenetic dynamics, loss of pluripotency is associated with a progressive acquisition of a specific genetic program, which is determined both by instructions received and by cell position in the whole organism. Pluripotent embryonic stem cells can be isolated and cultured in vitro indefinitely. Using mammalian embryonic stem cells (ESCs), it has been possible to identify the factors involved in the establishment and maintenance of pluripotency state. In this review, we will describe recent scientific advances in the understanding of pluripotency, the molecular actors involved in such a regulation and their functional conservation during evolution. We shall focus on new concepts, obtained from the study of vertebrate model organisms, to shed light on the cell transition from pluripotency to differentiated state, and shall recapitulate fundamental and clinical applications of pluripotent cells, of "somatic cell nuclear transfer" (SCNT), of induced nuclear reprogramming in vitro and future perspectives of in vivo applications. Our results, in the xenopus, concerning the first in vivo induced nuclear reprogramming might open new perspectives about the understanding of cell plasticity in an integrated context. Our analyses sought to encourage new and alternative clinical approaches to achieve in situ tissue regeneration.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes , Animais , Evolução Biológica , Diferenciação Celular , Células Cultivadas , Meios de Cultura , Embrião de Mamíferos , Células-Tronco Embrionárias , Humanos , Modelos Animais , Técnicas de Transferência Nuclear , Fatores de Transcrição/fisiologia , Vertebrados , Xenopus
7.
PLoS One ; 7(5): e36855, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22606298

RESUMO

Vertebrate development requires progressive commitment of embryonic cells into specific lineages through a continuum of signals that play off differentiation versus multipotency. In mammals, Nanog is a key transcription factor that maintains cellular pluripotency by controlling competence to respond to differentiation cues. Nanog orthologs are known in most vertebrates examined to date, but absent from the Anuran amphibian Xenopus. Interestingly, in silico analyses and literature scanning reveal that basal vertebrate ventral homeobox (ventxs) and mammalian Nanog factors share extensive structural, evolutionary and functional properties. Here, we reassess the role of ventx activity in Xenopus laevis embryos and demonstrate that they play an unanticipated role as guardians of high developmental potential during early development. Joint over-expression of Xenopus ventx1.2 and ventx2.1-b (ventx1/2) counteracts lineage commitment towards both dorsal and ventral fates and prevents msx1-induced ventralization. Furthermore, ventx1/2 inactivation leads to down-regulation of the multipotency marker oct91 and to premature differentiation of blastula cells. Finally, supporting the key role of ventx1/2 in the control of developmental potential during development, mouse Nanog (mNanog) expression specifically rescues embryonic axis formation in ventx1/2 deficient embryos. We conclude that during Xenopus development ventx1/2 activity, reminiscent of that of Nanog in mammalian embryos, controls the switch of early embryonic cells from uncommitted to committed states.


Assuntos
Proteínas de Homeodomínio/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal , Diferenciação Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/metabolismo , Camundongos , Proteína Homeobox Nanog , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/genética , Xenopus laevis/genética
8.
J Biol Chem ; 287(10): 7427-35, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22232554

RESUMO

Adult mammalian cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by a limited combination of transcription factors. To date, most current iPSC generation protocols rely on viral vector usage in vitro, using cells removed from their physiological context. Such protocols are hindered by low derivation efficiency and risks associated with genome modifications of reprogrammed cells. Here, we reprogrammed cells in an in vivo context using non-viral somatic transgenesis in Xenopus tadpole tail muscle, a setting that provides long term expression of non-integrated transgenes in vivo. Expression of mouse mOct4, mSox2, and mKlf4 (OSK) led rapidly and reliably to formation of proliferating cell clusters. These clusters displayed the principal hallmarks of pluripotency: alkaline phosphatase activity, up-regulation of key epigenetic and chromatin remodeling markers, and reexpression of endogenous pluripotent markers. Furthermore, these clusters were capable of differentiating into derivatives of the three germ layers in vitro and into neurons and muscle fibers in vivo. As in situ reprogramming occurs along with muscle tissue repair, the data provide a link between these two processes and suggest that they act synergistically. Notably, every OSK injection resulted in cluster formation. We conclude that reprogramming is achievable in an anamniote model and propose that in vivo approaches could provide rapid and efficient alternative for non-viral iPSC production. The work opens new perspectives in basic stem cell research and in the longer term prospect of regenerative medicine protocols development.


Assuntos
Desdiferenciação Celular , Proliferação de Células , Fatores de Transcrição Kruppel-Like/biossíntese , Fibras Musculares Esqueléticas/metabolismo , Fator 3 de Transcrição de Octâmero/biossíntese , Fatores de Transcrição SOXB1/biossíntese , Animais , Expressão Gênica , Técnicas de Transferência de Genes , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Larva/citologia , Larva/metabolismo , Camundongos , Fibras Musculares Esqueléticas/citologia , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXB1/genética , Xenopus laevis
9.
Birth Defects Res B Dev Reprod Toxicol ; 89(6): 493-503, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21086490

RESUMO

Jaws are formed by cephalic neural crest (CNCCs) and mesodermal cells migrating to the first pharyngeal arch (PA1). A complex signaling network involving different PA1 components then establishes the jaw morphogenetic program. To gather insight on this developmental process, in this study, we analyze the teratogenic effects of brief (1-15 min) pulses of low doses of retinoic acid (RA: 0.25-2 µM) or RA agonists administered to early Xenopus laevis (X.l.) embryos. We show that these brief pulses of RA cause permanent craniofacial defects specifically when treatments are performed during a 6-hr window (developmental stages NF15-NF23) that covers the period of CNCCs maintenance, migration, and specification. Earlier or later treatments have no effect. Similar treatments performed at slightly different developmental stages within this temporal window give rise to different spectra of malformations. The RA-dependent teratogenic effects observed in Xenopus can be partially rescued by folinic acid. We provide evidence suggesting that in Xenopus, as in the mouse, RA causes craniofacial malformations by perturbing signaling to CNCCs. Differently from the mouse, where RA affects CNCCs only at the end of their migration, in Xenopus, RA has an effect on CNCCs during all the period ranging from their exit from the neural tube until their arrival in the PA1. Our findings provide a conceptual framework to understand the origin of individual facial features and the evolution of different craniofacial morphotypes.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Arcada Osseodentária/embriologia , Ceratolíticos/toxicidade , Morfogênese/efeitos dos fármacos , Crista Neural/embriologia , Tretinoína/toxicidade , Xenopus laevis/embriologia , Anormalidades Induzidas por Medicamentos , Animais , Benzoatos/toxicidade , Antagonismo de Drogas , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Anormalidades Maxilomandibulares/induzido quimicamente , Anormalidades Maxilomandibulares/genética , Anormalidades Maxilomandibulares/patologia , Ceratolíticos/administração & dosagem , Leucovorina/farmacologia , Crista Neural/anormalidades , Crista Neural/efeitos dos fármacos , Pulsoterapia , Retinoides/toxicidade , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tretinoína/administração & dosagem , Complexo Vitamínico B/farmacologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
10.
PLoS One ; 2(6): e510, 2007 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-17551590

RESUMO

BACKGROUND: Intake of retinoic acid (RA) or of its precursor, vitamin A, during early pregnancy is associated with increased incidence of craniofacial lesions. The origin of these teratogenic effects remains enigmatic as in cranial neural crest cells (CNCCs), which largely contribute to craniofacial structures, the RA-transduction pathway is not active. Recent results suggest that RA could act on the endoderm of the first pharyngeal arch (1stPA), through a RARbeta-dependent mechanism. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that RA provokes dramatically different craniofacial malformations when administered at slightly different developmental times within a narrow temporal interval corresponding to the colonization of the 1(st) PA by CNCCs. We provide evidence showing that RA acts on the signalling epithelium of the 1(st) PA, gradually reducing the expression of endothelin-1 and Fgf8. These two molecular signals are instrumental in activating Dlx genes in incoming CNCCs, thereby triggering the morphogenetic programs, which specify different jaw elements. CONCLUSIONS/SIGNIFICANCE: The anatomical series induced by RA-treatments at different developmental times parallels, at least in some instances, the supposed origin of modern jaws (e.g., the fate of the incus). Our results might provide a conceptual framework for the rise of jaw morphotypes characteristic of gnathostomes.


Assuntos
Anormalidades Craniofaciais/induzido quimicamente , Anormalidades Craniofaciais/metabolismo , Embrião de Mamíferos/efeitos dos fármacos , Arcada Osseodentária/anatomia & histologia , Ceratolíticos/farmacologia , Tretinoína/farmacologia , Animais , Anormalidades Craniofaciais/patologia , Proteína 2 de Resposta de Crescimento Precoce/fisiologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Endotelina-1/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Simulação de Dinâmica Molecular , Crista Neural/citologia , Crista Neural/efeitos dos fármacos , Crista Neural/metabolismo , Gravidez , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais
11.
BMC Genomics ; 8: 118, 2007 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-17506875

RESUMO

BACKGROUND: The western African clawed frog Xenopus tropicalis is an anuran amphibian species now used as model in vertebrate comparative genomics. It provides the same advantages as Xenopus laevis but is diploid and has a smaller genome of 1.7 Gbp. Therefore X. tropicalis is more amenable to systematic transcriptome surveys. We initiated a large-scale partial cDNA sequencing project to provide a functional genomics resource on genes expressed in the nervous system during early embryogenesis and metamorphosis in X. tropicalis. RESULTS: A gene index was defined and analysed after the collection of over 48,785 high quality sequences. These partial cDNA sequences were obtained from an embryonic head and retina library (30,272 sequences) and from a metamorphic brain and spinal cord library (27,602 sequences). These ESTs are estimated to represent 9,693 transcripts derived from an estimated 6,000 genes. Comparison of these cDNA sequences with protein databases indicates that 46% contain their start codon. Further annotation included Gene Ontology functional classification, InterPro domain analysis, alternative splicing and non-coding RNA identification. Gene expression profiles were derived from EST counts and used to define transcripts specific to metamorphic stages of development. Moreover, these ESTs allowed identification of a set of 225 polymorphic microsatellites that can be used as genetic markers. CONCLUSION: These cDNA sequences permit in silico cloning of numerous genes and will facilitate studies aimed at deciphering the roles of cognate genes expressed in the nervous system during neural development and metamorphosis. The genomic resources developed to study X. tropicalis biology will accelerate exploration of amphibian physiology and genetics. In particular, the model will facilitate analysis of key questions related to anuran embryogenesis and metamorphosis and its associated regulatory processes.


Assuntos
Desenvolvimento Embrionário , Etiquetas de Sequências Expressas , Sistema Nervoso/embriologia , RNA Mensageiro/genética , Xenopus/genética , Processamento Alternativo , Animais , DNA Complementar , Perfilação da Expressão Gênica , Metamorfose Biológica , Polimorfismo Genético , Xenopus/embriologia
12.
Proc Natl Acad Sci U S A ; 104(20): 8502-7, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17488818

RESUMO

During anuran metamorphosis, the tadpole brain is transformed producing the sensorial and motor systems required for the frog's predatory lifestyle. Nervous system remodeling simultaneously implicates apoptosis, cell division, and differentiation. The molecular mechanisms underlying this remodeling have yet to be characterized. Starting from the observation that active caspase-9 and the Bcl-X(L) homologue, XR11 are highly expressed in tadpole brain during metamorphosis, we determined their implication in regulating the balance of apoptosis and proliferation in the developing tadpole brain. In situ hybridization showed caspase-9 mRNA to be expressed mainly in the ventricular area, a site of neuroblast proliferation. To test the functional role of caspase-9 in equilibrating neuroblast production and elimination, we overexpressed a dominant-negative caspase-9 protein, DN9, in the tadpole brain using somatic gene transfer and germinal transgenesis. In both cases, abrogating caspase-9 activity significantly decreased brain apoptosis and increased numbers of actively proliferating cells in the ventricular zone. Moreover, overexpression of XR11 with or without DN9 was also effective in decreasing apoptosis and increasing cell division in the tadpole brain. We conclude that XR11 and caspase-9, two key members of the mitochondrial death pathway, are implicated in controlling the proliferative status of neuroblasts in the metamorphosing Xenopus brain. Modification of their expression during the critical period of metamorphosis alters the outcome of metamorphic neurogenesis, resulting in a modified brain phenotype in juvenile Xenopus.


Assuntos
Apoptose , Encéfalo/enzimologia , Encéfalo/fisiologia , Caspase 9/metabolismo , Metamorfose Biológica/fisiologia , Xenopus laevis/fisiologia , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Caspase 9/genética , Proliferação de Células , Sobrevivência Celular , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/enzimologia , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Genes Dominantes , Larva/enzimologia , Larva/fisiologia , Mitose , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Xenopus/metabolismo , Proteína bcl-X/metabolismo
13.
Vet Res ; 36(4): 529-44, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15955279

RESUMO

Bovine herpesvirus 1 (BoHV-1) has frequently been used as a model for testing parameters affecting DNA immunisation in large animals like cattle. However, the selection of target antigens has been poorly studied, and most of the experiments have been conducted in mice. In the present study, we demonstrated in cattle that a DNA vaccine encoding BoHV-1 glycoprotein gD induces higher neutralising antibody titres than vaccines encoding BoHV-1 gC. Additionally, we show that a DNA vaccine encoding a secreted form of gD induces a higher immune response than a vaccine encoding full-length gD. However, the enhanced immunogenicity associated with the secretion of gD could not be extended to the glycoprotein gC. The current study also describes for the first time the development and the evaluation of a DNA vaccine encoding the major tegument protein VP8. This construct, which is the first BoHV-1 plasmid vaccine candidate that is not directed against a surface glycoprotein, induced a high BoHV-1 specific cellular immunity but no humoral immune response. The calves vaccinated with the constructs encoding full-length and truncated gD showed a non-significant tenfold reduction of virus excretion after challenge. Those calves also excreted virus for significantly (p < 0.05) shorter periods (1.5 days) than the non-vaccinated controls. The other constructs encoding gC and VP8 antigens induced no virological protection as compared to controls. Altogether the DNA vaccines induced weaker immunity and protection than conventional marker vaccines tested previously, confirming the difficulty to develop efficient DNA vaccines in large species.


Assuntos
Bovinos/imunologia , Herpesvirus Bovino 1/imunologia , Vacinas contra Herpesvirus/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos Antivirais/sangue , Proteínas do Capsídeo/imunologia , Linhagem Celular , Glicoproteínas/imunologia , Fatores de Tempo , Proteínas do Envelope Viral/imunologia
14.
Environ Health Perspect ; 113(3): 329-34, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15743723

RESUMO

Estrogenic endocrine-disrupting chemicals abnormally stimulate vitellogenin gene expression and production in the liver of many male aquatic vertebrates. However, very few studies demonstrate the effects of estrogenic pollutants on brain function. We have used polyethylenimine-mediated in vivo somatic gene transfer to introduce an estrogen response element-thymidine kinase-luciferase (ERE-TK-LUC) construct into the brain. To determine if waterborne estrogenic chemicals modulate gene transcription in the brain, we injected the estrogen-sensitive construct into the brains of Nieuwkoop-Faber stage 54 Xenopus laevis tadpoles. Both ethinylestradiol (EE2; p < 0.002) and bisphenol A (BPA; p < 0.03) increased luciferase activity by 1.9- and 1.5-fold, respectively. In contrast, low physiologic levels of 17ss-estradiol had no effect (p > 0.05). The mixed antagonist/agonist tamoxifen was estrogenic in vivo and increased (p < 0.003) luciferase activity in the tadpole brain by 2.3-fold. There have been no previous reports of somatic gene transfer to the fish brain; therefore, it was necessary to optimize injection and transfection conditions for the adult goldfish (Carassius auratus). Following third brain ventricle injection of cytomegalovirus (CMV)-green fluorescent protein or CMV-LUC gene constructs, we established that cells in the telencephalon and optic tectum are transfected. Optimal transfections were achieved with 1 microg DNA complexed with 18 nmol 22 kDa polyethylenimine 4 days after brain injections. Exposure to EE2 increased brain luciferase activity by 2-fold in males (p < 0.05) but not in females. Activation of an ERE-dependent luciferase reporter gene in both tadpole and fish indicates that waterborne estrogens can directly modulate transcription of estrogen-responsive genes in the brain. We provide a method adaptable to aquatic organisms to study the direct regulation of estrogen-responsive genes in vivo.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Estrogênios/toxicidade , Perfilação da Expressão Gênica , Técnicas de Transferência de Genes , Luciferases/genética , Timidina Quinase/genética , Animais , Bioensaio/métodos , Citomegalovirus/genética , Sistema Endócrino/efeitos dos fármacos , Estrogênios/farmacologia , Carpa Dourada/genética , Carpa Dourada/fisiologia , Luciferases/farmacologia , Timidina Quinase/farmacologia , Transfecção , Poluentes Químicos da Água/farmacologia , Poluentes Químicos da Água/toxicidade , Xenopus laevis/genética
15.
Dev Dyn ; 233(1): 76-87, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15765509

RESUMO

The climax of amphibian metamorphosis is marked by thyroid hormone-dependent tadpole tail resorption, implicating apoptosis of multiple cell types, including epidermal cells, fibroblasts, nerve cells, and muscles. The molecular cascades leading to and coordinating the death of different cell types are not fully elucidated. It is known that the mitochondrial pathway, and in particular the Bax and XR11 genes, regulates the balance between apoptosis and survival in muscle. However, the down-stream factors modulated by changes in mitochondrial permeability have not been studied in a functional context. To investigate further the mitochondrial-dependent pathway, we analyzed the regulation and the role of caspase 9 in Xenopus tadpoles. We report that caspase 9 mRNA is expressed in the tail before metamorphosis and increases before and during climax. Similarly, at the protein level, the production of active forms of caspase 9 increases in muscle tissue as metamorphosis progresses. To assess the functional role of caspase 9, we designed a dominant-negative protein. Overexpression of this dominant-negative abrogates both Bax-induced cell death in vitro and muscle apoptosis in vivo during natural metamorphosis. These findings consolidate a model of metamorphic muscle death that directly implicates the mitochondrial pathway and the apoptosome.


Assuntos
Apoptose/fisiologia , Caspases/fisiologia , Músculo Esquelético/fisiologia , Cauda/fisiologia , Sequência de Aminoácidos , Animais , Apoptose/genética , Caspase 9 , Caspases/genética , Técnicas de Transferência de Genes , Larva/crescimento & desenvolvimento , Dados de Sequência Molecular , Mutação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Xenopus , Proteína X Associada a bcl-2
16.
Mol Cell Neurosci ; 20(4): 627-37, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12213444

RESUMO

The retrograde transport and transynaptic transfer properties of the nontoxic tetanus toxin C-fragment (TTC) can be used to visualize specific neural pathways or to deliver biomolecules in the central nervous system (CNS). Here we tested different delivery techniques to explore the potential use of a new GFP-TTC fusion construct for use as a genetic tracer in vivo. Plasmids encoding GFP-TTC were targeted to brain regions using intracerebral grafted transfected cells or adenoviral transduction. Transport was monitored using GFP fluorescence. We show that following GFP-TTC synthesis in grafted transfected cells, the TTC fragment alone, with no signal peptide, is necessary and sufficient to provide secretion and uptake of the fusion protein into neighboring neurons around the injection site. Using an adenoviral vector to express the fusion protein into brain neurons, we show that transduced neurons can deliver the fusion protein specifically into connected neurons, demonstrating that synaptic transfer in the CNS can be visualized with GFP-TTC.


Assuntos
Sistema Nervoso Central/fisiologia , Técnicas de Transferência de Genes , Indicadores e Reagentes , Proteínas Luminescentes/genética , Neurônios/fisiologia , Fragmentos de Peptídeos/genética , Proteínas Recombinantes de Fusão/genética , Toxina Tetânica/genética , Animais , Transporte Biológico Ativo , Encéfalo/cirurgia , Linhagem Celular , Transplante de Células , Técnicas de Cocultura , Proteínas de Fluorescência Verde , Indicadores e Reagentes/farmacocinética , Membranas Intracelulares/metabolismo , Proteínas Luminescentes/farmacocinética , Masculino , Fragmentos de Peptídeos/farmacocinética , Sinais Direcionadores de Proteínas/fisiologia , Ratos , Ratos Wistar , Toxina Tetânica/farmacocinética , Distribuição Tecidual , Transdução Genética
17.
Dev Dyn ; 224(4): 381-90, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12203730

RESUMO

A key event in metamorphosis of anuran amphibians is tail resorption. This composite structure includes epidermal cells, spinal cord, muscle fibres and connective tissue. It is unclear how resorption proceeds and to what extent the signals for the death process are transmitted between cells. We determined the kinetics of metamorphosis, apoptosis, and tail regression in the diploid anuran, Xenopus tropicalis, a species more suited to genetic analysis than the pseudotetraploid, Xenopus laevis. Metamorphosis was found to proceed at a regular and predictable rate in X. tropicalis but not in X. laevis. Caspase 3 activity and mRNA levels were correlated with TdT-mediated dUTP nick end-labeling (TUNEL) signalling and most markedly increased in tail muscle and spinal cord. It has been proposed that muscles die as a result of loss of connectivity with the surrounding matrix. To test this hypothesis, we used direct DNA injection in trunk and tail muscle to overexpress Xenopus Bcl-X(L) (xR11), an anti-apoptotic gene, along with a marker gene (luciferase or GFP). xR11 significantly inhibited the cell death process in both trunk and tail muscle. This protection was functional even up to stage 64 on completion of tail regression. We conclude that (1) somatic gene transfer can be applied to analyse cell fate in X. tropicalis, and (2) that muscle death can be abrogated despite extracellular matrix loss.


Assuntos
Apoptose/fisiologia , Metamorfose Biológica/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Xenopus/crescimento & desenvolvimento , Laranja de Acridina/metabolismo , Animais , Caspase 3 , Caspases/genética , Caspases/metabolismo , Corantes Fluorescentes/metabolismo , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde , Marcação In Situ das Extremidades Cortadas , Proteínas Luminescentes/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Cauda/crescimento & desenvolvimento , Cauda/fisiologia , Transcrição Gênica , Xenopus/genética , Xenopus/fisiologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA