Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Arch Toxicol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755480

RESUMO

The tumour suppressor p16/CDKN2A and the metabolic gene, methyl-thio-adenosine phosphorylase (MTAP), are frequently co-deleted in some of the most aggressive and currently untreatable cancers. Cells with MTAP deletion are vulnerable to inhibition of the metabolic enzyme, methionine-adenosyl transferase 2A (MAT2A), and the protein arginine methyl transferase (PRMT5). This synthetic lethality has paved the way for the rapid development of drugs targeting the MAT2A/PRMT5 axis. MAT2A and its liver- and pancreas-specific isoform, MAT1A, generate the universal methyl donor S-adenosylmethionine (SAM) from ATP and methionine. Given the pleiotropic role SAM plays in methylation of diverse substrates, characterising the extent of SAM depletion and downstream perturbations following MAT2A/MAT1A inhibition (MATi) is critical for safety assessment. We have assessed in vivo target engagement and the resultant systemic phenotype using multi-omic tools to characterise response to a MAT2A inhibitor (AZ'9567). We observed significant SAM depletion and extensive methionine accumulation in the plasma, liver, brain and heart of treated rats, providing the first assessment of both global SAM depletion and evidence of hepatic MAT1A target engagement. An integrative analysis of multi-omic data from liver tissue identified broad perturbations in pathways covering one-carbon metabolism, trans-sulfuration and lipid metabolism. We infer that these pathway-wide perturbations represent adaptive responses to SAM depletion and confer a risk of oxidative stress, hepatic steatosis and an associated disturbance in plasma and cellular lipid homeostasis. The alterations also explain the dramatic increase in plasma and tissue methionine, which could be used as a safety and PD biomarker going forward to the clinic.

2.
J Med Chem ; 67(6): 4541-4559, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38466661

RESUMO

The optimization of an allosteric fragment, discovered by differential scanning fluorimetry, to an in vivo MAT2a tool inhibitor is discussed. The structure-based drug discovery approach, aided by relative binding free energy calculations, resulted in AZ'9567 (21), a potent inhibitor in vitro with excellent preclinical pharmacokinetic properties. This tool showed a selective antiproliferative effect on methylthioadenosine phosphorylase (MTAP) KO cells, both in vitro and in vivo, providing further evidence to support the utility of MAT2a inhibitors as potential anticancer therapies for MTAP-deficient tumors.


Assuntos
Neoplasias , Humanos , Entropia , Metionina Adenosiltransferase/metabolismo
4.
Dis Model Mech ; 16(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695500

RESUMO

Parkinson's disease (PD), an age-dependent neurodegenerative disease, is characterised by the selective loss of dopaminergic neurons in the substantia nigra (SN). Mitochondrial dysfunction is a hallmark of PD, and mutations in PINK1, a gene necessary for mitochondrial fitness, cause PD. Drosophila melanogaster flies with pink1 mutations exhibit mitochondrial defects and dopaminergic cell loss and are used as a PD model. To gain an integrated view of the cellular changes caused by defects in the PINK1 pathway of mitochondrial quality control, we combined metabolomics and transcriptomics analysis in pink1-mutant flies with human induced pluripotent stem cell (iPSC)-derived neural precursor cells (NPCs) with a PINK1 mutation. We observed alterations in cysteine metabolism in both the fly and human PD models. Mitochondrial dysfunction in the NPCs resulted in changes in several metabolites that are linked to cysteine synthesis and increased glutathione levels. We conclude that alterations in cysteine metabolism may compensate for increased oxidative stress in PD, revealing a unifying mechanism of early-stage PD pathology that may be targeted for drug development. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Drosophila , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Drosophila melanogaster/metabolismo , Cisteína , Doença de Parkinson/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinases/genética
5.
J Hepatol ; 78(3): 558-573, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36370949

RESUMO

BACKGROUND & AIMS: Acute liver failure (ALF) is a life-threatening disease characterised by high-grade inflammation and immunoparesis, which is associated with a high incidence of death from sepsis. Herein, we aimed to describe the metabolic dysregulation in ALF and determine whether systemic immune responses are modulated via the lysophosphatidylcholine (LPC)-autotaxin (ATX)-lysophosphatidylcholinic acid (LPA) pathway. METHODS: Ninety-six individuals with ALF, 104 with cirrhosis, 31 with sepsis and 71 healthy controls (HCs) were recruited. Pathways of interest were identified by multivariate statistical analysis of proton nuclear magnetic resonance spectroscopy and untargeted ultraperformance liquid chromatography-mass spectrometry-based lipidomics. A targeted metabolomics panel was used for validation. Peripheral blood mononuclear cells were cultured with LPA 16:0, 18:0, 18:1, and their immune checkpoint surface expression was assessed by flow cytometry. Transcript-level expression of the LPA receptor (LPAR) in monocytes was investigated and the effect of LPAR antagonism was also examined in vitro. RESULTS: LPC 16:0 was highly discriminant between ALF and HC. There was an increase in ATX and LPA in individuals with ALF compared to HCs and those with sepsis. LPCs 16:0, 18:0 and 18:1 were reduced in individuals with ALF and were associated with a poor prognosis. Treatment of monocytes with LPA 16:0 increased their PD-L1 expression and reduced CD155, CD163, MerTK levels, without affecting immune checkpoints on T and NK/CD56+T cells. LPAR1 and 3 antagonism in culture reversed the effect of LPA on monocyte expression of MerTK and CD163. MerTK and CD163, but not LPAR genes, were differentially expressed and upregulated in monocytes from individuals with ALF compared to controls. CONCLUSION: Reduced LPC levels are biomarkers of poor prognosis in individuals with ALF. The LPC-ATX-LPA axis appears to modulate innate immune response in ALF via LPAR1 and LPAR3. Further investigations are required to identify novel therapeutic agents targeting these receptors. IMPACT AND IMPLICATIONS: We identified a metabolic signature of acute liver failure (ALF) and investigated the immunometabolic role of the lysophosphatidylcholine-autotaxin-lysophosphatidylcholinic acid pathway, with the aim of finding a mechanistic explanation for monocyte behaviour and identifying possible therapeutic targets (to modulate the systemic immune response in ALF). At present, no selective immune-based therapies exist. We were able to modulate the phenotype of monocytes in vitro and aim to extend these findings to murine models of ALF as a next step. Future therapies may be based on metabolic modulation; thus, the role of specific lipids in this pathway require elucidation and the relative merits of autotaxin inhibition, lysophosphatidylcholinic acid receptor blockade or lipid-based therapies need to be determined. Our findings begin to bridge this knowledge gap and the methods used herein could be useful in identifying therapeutic targets as part of an experimental medicine approach.


Assuntos
Falência Hepática Aguda , Sepse , Animais , Camundongos , Lisofosfatidilcolinas , Monócitos , Leucócitos Mononucleares/metabolismo , c-Mer Tirosina Quinase/metabolismo , Falência Hepática Aguda/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Imunidade Inata , Sepse/metabolismo , Lisofosfolipídeos/metabolismo
6.
Nat Commun ; 13(1): 7024, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411288

RESUMO

Environmental exposures during early life play a critical role in life-course health, yet the molecular phenotypes underlying environmental effects on health are poorly understood. In the Human Early Life Exposome (HELIX) project, a multi-centre cohort of 1301 mother-child pairs, we associate individual exposomes consisting of >100 chemical, outdoor, social and lifestyle exposures assessed in pregnancy and childhood, with multi-omics profiles (methylome, transcriptome, proteins and metabolites) in childhood. We identify 1170 associations, 249 in pregnancy and 921 in childhood, which reveal potential biological responses and sources of exposure. Pregnancy exposures, including maternal smoking, cadmium and molybdenum, are predominantly associated with child DNA methylation changes. In contrast, childhood exposures are associated with features across all omics layers, most frequently the serum metabolome, revealing signatures for diet, toxic chemical compounds, essential trace elements, and weather conditions, among others. Our comprehensive and unique resource of all associations ( https://helixomics.isglobal.org/ ) will serve to guide future investigation into the biological imprints of the early life exposome.


Assuntos
Expossoma , Gravidez , Feminino , Humanos , Exposição Ambiental/efeitos adversos , Estudos de Coortes , Metaboloma , Transcriptoma
7.
Arch Toxicol ; 96(2): 613-624, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973110

RESUMO

The receptor tyrosine kinase, MERTK, plays an essential role in homeostasis of the retina via efferocytosis of shed outer nuclear segments of photoreceptors. The Royal College of Surgeons rat model of retinal degeneration has been linked to loss-of-function of MERTK, and together with the MERTK knock-out mouse, phenocopy retinitis pigmentosa in humans with MERTK mutations. Given recent efforts and interest in MERTK as a potential immuno-oncology target, development of a strategy to assess ocular safety at an early pre-clinical stage is critical. We have applied a state-of-the-art, multi-modal imaging platform to assess the in vivo effects of pharmacological inhibition of MERTK in mice. This involved the application of mass spectrometry imaging (MSI) to characterize the ocular spatial distribution of our highly selective MERTK inhibitor; AZ14145845, together with histopathology and transmission electron microscopy to characterize pathological and ultra-structural change in response to MERTK inhibition. In addition, we assessed the utility of a human retinal in vitro cell model to identify perturbation of phagocytosis post MERTK inhibition. We identified high localized total compound concentrations in the retinal pigment epithelium (RPE) and retinal lesions following 28 days of treatment with AZ14145845. These lesions were present in 4 of 8 treated animals, and were characterized by a thinning of the outer nuclear layer, loss of photoreceptors (PR) and accumulation of photoreceptor outer segments at the interface of the RPE and PRs. Furthermore, the lesions were very similar to that shown in the RCS rat and MERTK knock-out mouse, suggesting a MERTK-induced mechanism of PR cell death. This was further supported by the observation of reduced phagocytosis in the human retinal cell model following treatment with AZ14145845. Our study provides a viable, translational strategy to investigate the pre-clinical toxicity of MERTK inhibitors but is equally transferrable to novel chemotypes.


Assuntos
Fagocitose/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , c-Mer Tirosina Quinase/antagonistas & inibidores , Animais , Linhagem Celular , Feminino , Humanos , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Imagem Multimodal , Células Fotorreceptoras de Vertebrados/patologia , Ratos , Ratos Long-Evans , Ratos Wistar , Degeneração Retiniana/induzido quimicamente , Epitélio Pigmentado da Retina/metabolismo , Distribuição Tecidual , c-Mer Tirosina Quinase/genética
8.
Elife ; 112022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076016

RESUMO

Urinary metabolic profiling is a promising powerful tool to reflect dietary intake and can help understand metabolic alterations in response to diet quality. Here, we used 1H NMR spectroscopy in a multicountry study in European children (1147 children from 6 different cohorts) and identified a common panel of 4 urinary metabolites (hippurate, N-methylnicotinic acid, urea, and sucrose) that was predictive of Mediterranean diet adherence (KIDMED) and ultra-processed food consumption and also had higher capacity in discriminating children's diet quality than that of established sociodemographic determinants. Further, we showed that the identified metabolite panel also reflected the associations of these diet quality indicators with C-peptide, a stable and accurate marker of insulin resistance and future risk of metabolic disease. This methodology enables objective assessment of dietary patterns in European child populations, complementary to traditional questionary methods, and can be used in future studies to evaluate diet quality. Moreover, this knowledge can provide mechanistic evidence of common biological pathways that characterize healthy and unhealthy dietary patterns, and diet-related molecular alterations that could associate to metabolic disease.


Assuntos
Biomarcadores/urina , Dieta , Metaboloma , Metabolômica/métodos , Criança , Dieta Mediterrânea , Europa (Continente) , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Curva ROC , Análise de Regressão
9.
J Hepatol ; 76(2): 332-342, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34571050

RESUMO

BACKGROUND & AIMS: Rifaximin-α is efficacious for the prevention of recurrent hepatic encephalopathy (HE), but its mechanism of action remains unclear. We postulated that rifaximin-α reduces gut microbiota-derived endotoxemia and systemic inflammation, a known driver of HE. METHODS: In a placebo-controlled, double-blind, mechanistic study, 38 patients with cirrhosis and HE were randomised 1:1 to receive either rifaximin-α (550 mg BID) or placebo for 90 days. PRIMARY OUTCOME: 50% reduction in neutrophil oxidative burst (OB) at 30 days. SECONDARY OUTCOMES: changes in psychometric hepatic encephalopathy score (PHES) and neurocognitive functioning, shotgun metagenomic sequencing of saliva and faeces, plasma and faecal metabolic profiling, whole blood bacterial DNA quantification, neutrophil toll-like receptor (TLR)-2/4/9 expression and plasma/faecal cytokine analysis. RESULTS: Patients were well-matched: median MELD (11 rifaximin-α vs. 10 placebo). Rifaximin-α did not lead to a 50% reduction in spontaneous neutrophil OB at 30 days compared to baseline (p = 0.48). However, HE grade normalised (p = 0.014) and PHES improved (p = 0.009) after 30 days on rifaximin-α. Rifaximin-α reduced circulating neutrophil TLR-4 expression on day 30 (p = 0.021) and plasma tumour necrosis factor-α (TNF-α) (p <0.001). Rifaximin-α suppressed oralisation of the gut, reducing levels of mucin-degrading sialidase-rich species, Streptococcus spp, Veillonella atypica and parvula, Akkermansia and Hungatella. Rifaximin-α promoted a TNF-α- and interleukin-17E-enriched intestinal microenvironment, augmenting antibacterial responses to invading pathobionts and promoting gut barrier repair. Those on rifaximin-α were less likely to develop infection (odds ratio 0.21; 95% CI 0.05-0.96). CONCLUSION: Rifaximin-α led to resolution of overt and covert HE, reduced the likelihood of infection, reduced oralisation of the gut and attenuated systemic inflammation. Rifaximin-α plays a role in gut barrier repair, which could be the mechanism by which it ameliorates bacterial translocation and systemic endotoxemia in cirrhosis. CLINICAL TRIAL NUMBER: ClinicalTrials.gov NCT02019784. LAY SUMMARY: In this clinical trial, we examined the underlying mechanism of action of an antibiotic called rifaximin-α which has been shown to be an effective treatment for a complication of chronic liver disease which effects the brain (termed encephalopathy). We show that rifaximin-α suppresses gut bacteria that translocate from the mouth to the intestine and cause the intestinal wall to become leaky by breaking down the protective mucus barrier. This suppression resolves encephalopathy and reduces inflammation in the blood, preventing the development of infection.


Assuntos
Encefalopatia Hepática/tratamento farmacológico , Inflamação/tratamento farmacológico , Cirrose Hepática/tratamento farmacológico , Mucinas/metabolismo , Rifaximina/farmacologia , Adulto , Idoso , Método Duplo-Cego , Feminino , Fármacos Gastrointestinais/metabolismo , Fármacos Gastrointestinais/farmacologia , Fármacos Gastrointestinais/uso terapêutico , Encefalopatia Hepática/fisiopatologia , Humanos , Inflamação/epidemiologia , Inflamação/prevenção & controle , Cirrose Hepática/epidemiologia , Cirrose Hepática/fisiopatologia , Masculino , Pessoa de Meia-Idade , Mucinas/efeitos dos fármacos , Ontário/epidemiologia , Placebos , Rifaximina/metabolismo , Rifaximina/uso terapêutico
10.
J Med Chem ; 64(18): 13524-13539, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34478292

RESUMO

Inhibition of Mer and Axl kinases has been implicated as a potential way to improve the efficacy of current immuno-oncology therapeutics by restoring the innate immune response in the tumor microenvironment. Highly selective dual Mer/Axl kinase inhibitors are required to validate this hypothesis. Starting from hits from a DNA-encoded library screen, we optimized an imidazo[1,2-a]pyridine series using structure-based compound design to improve potency and reduce lipophilicity, resulting in a highly selective in vivo probe compound 32. We demonstrated dose-dependent in vivo efficacy and target engagement in Mer- and Axl-dependent efficacy models using two structurally differentiated and selective dual Mer/Axl inhibitors. Additionally, in vivo efficacy was observed in a preclinical MC38 immuno-oncology model in combination with anti-PD1 antibodies and ionizing radiation.


Assuntos
Antineoplásicos/uso terapêutico , Imidazóis/uso terapêutico , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Animais , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Imidazóis/síntese química , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Proteínas Proto-Oncogênicas/metabolismo , Piridinas/síntese química , Receptores Proteína Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , c-Mer Tirosina Quinase/metabolismo , Receptor Tirosina Quinase Axl
11.
BMC Med ; 19(1): 166, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34289836

RESUMO

BACKGROUND: Multiple omics technologies are increasingly applied to detect early, subtle molecular responses to environmental stressors for future disease risk prevention. However, there is an urgent need for further evaluation of stability and variability of omics profiles in healthy individuals, especially during childhood. METHODS: We aimed to estimate intra-, inter-individual and cohort variability of multi-omics profiles (blood DNA methylation, gene expression, miRNA, proteins and serum and urine metabolites) measured 6 months apart in 156 healthy children from five European countries. We further performed a multi-omics network analysis to establish clusters of co-varying omics features and assessed the contribution of key variables (including biological traits and sample collection parameters) to omics variability. RESULTS: All omics displayed a large range of intra- and inter-individual variability depending on each omics feature, although all presented a highest median intra-individual variability. DNA methylation was the most stable profile (median 37.6% inter-individual variability) while gene expression was the least stable (6.6%). Among the least stable features, we identified 1% cross-omics co-variation between CpGs and metabolites (e.g. glucose and CpGs related to obesity and type 2 diabetes). Explanatory variables, including age and body mass index (BMI), explained up to 9% of serum metabolite variability. CONCLUSIONS: Methylation and targeted serum metabolomics are the most reliable omics to implement in single time-point measurements in large cross-sectional studies. In the case of metabolomics, sample collection and individual traits (e.g. BMI) are important parameters to control for improved comparability, at the study design or analysis stage. This study will be valuable for the design and interpretation of epidemiological studies that aim to link omics signatures to disease, environmental exposures, or both.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Criança , Estudos de Coortes , Estudos Transversais , Metilação de DNA , Humanos
12.
Hepatology ; 74(2): 907-925, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33908067

RESUMO

BACKGROUND & AIMS: Acute-on-chronic liver failure (ACLF) is characterized by systemic inflammation, monocyte dysfunction, and susceptibility to infection. Lysophosphatidylcholines (LPCs) are immune-active lipids whose metabolic regulation and effect on monocyte function in ACLF is open for study. APPROACHES & RESULTS: Three hundred forty-two subjects were recruited and characterized for blood lipid, cytokines, phospholipase (PLA), and autotaxin (ATX) concentration. Peripheral blood mononuclear cells and CD14+ monocytes were cultured with LPC, or its autotaxin (ATX)-derived product, lysophosphatidic acid (LPA), with or without lipopolysaccharide stimulation and assessed for surface marker phenotype, cytokines production, ATX and LPA-receptor expression, and phagocytosis. Hepatic ATX expression was determined by immunohistochemistry. Healthy volunteers and patients with sepsis or acute liver failure served as controls. ACLF serum was depleted in LPCs with up-regulated LPA levels. Patients who died had lower LPC levels than survivors (area under the receiver operating characteristic curve, 0.94; P < 0.001). Patients with high-grade ACLF had the lowest LPC concentrations and these rose over the first 3 days of admission. ATX concentrations were higher in patients with AD and ACLF and correlated with Model for End-Stage Liver Disease, Consortium on Chronic Liver Failure-Sequential Organ Failure Assessment, and LPC/LPA concentrations. Reduction in LPC correlated with higher monocyte Mer-tyrosine-kinase (MerTK) and CD163 expression. Plasma ATX concentrations rose dynamically during ACLF evolution, correlating with IL-6 and TNF-α, and were associated with increased hepatocyte ATX expression. ACLF patients had lower human leukocyte antigen-DR isotype and higher CD163/MerTK monocyte expression than controls; both CD163/MerTK expression levels were reduced in ACLF ex vivo following LPA, but not LPC, treatment. LPA induced up-regulation of proinflammatory cytokines by CD14+ cells without increasing phagocytic capacity. CONCLUSIONS: ATX up-regulation in ACLF promotes LPA production from LPC. LPA suppresses MerTK/CD163 expression and increases monocyte proinflammatory cytokine production. This metabolic pathway could be investigated to therapeutically reprogram monocytes in ACLF.


Assuntos
Insuficiência Hepática Crônica Agudizada/mortalidade , Monócitos/imunologia , Insuficiência Hepática Crônica Agudizada/diagnóstico , Insuficiência Hepática Crônica Agudizada/imunologia , Insuficiência Hepática Crônica Agudizada/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Separação Celular , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Inflamação/diagnóstico , Inflamação/imunologia , Inflamação/metabolismo , Lisofosfatidilcolinas/metabolismo , Lisofosfolipídeos/metabolismo , Masculino , Metabolômica , Pessoa de Meia-Idade , Monócitos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Cultura Primária de Células , Estudos Prospectivos , Índice de Gravidade de Doença , Transdução de Sinais/imunologia , Adulto Jovem
13.
BMC Med ; 18(1): 243, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32811491

RESUMO

BACKGROUND: The adverse health effects of early life exposure to tobacco smoking have been widely reported. In spite of this, the underlying molecular mechanisms of in utero and postnatal exposure to tobacco smoke are only partially understood. Here, we aimed to identify multi-layer molecular signatures associated with exposure to tobacco smoke in these two exposure windows. METHODS: We investigated the associations of maternal smoking during pregnancy and childhood secondhand smoke (SHS) exposure with molecular features measured in 1203 European children (mean age 8.1 years) from the Human Early Life Exposome (HELIX) project. Molecular features, covering 4 layers, included blood DNA methylation and gene and miRNA transcription, plasma proteins, and sera and urinary metabolites. RESULTS: Maternal smoking during pregnancy was associated with DNA methylation changes at 18 loci in child blood. DNA methylation at 5 of these loci was related to expression of the nearby genes. However, the expression of these genes themselves was only weakly associated with maternal smoking. Conversely, childhood SHS was not associated with blood DNA methylation or transcription patterns, but with reduced levels of several serum metabolites and with increased plasma PAI1 (plasminogen activator inhibitor-1), a protein that inhibits fibrinolysis. Some of the in utero and childhood smoking-related molecular marks showed dose-response trends, with stronger effects with higher dose or longer duration of the exposure. CONCLUSION: In this first study covering multi-layer molecular features, pregnancy and childhood exposure to tobacco smoke were associated with distinct molecular phenotypes in children. The persistent and dose-dependent changes in the methylome make CpGs good candidates to develop biomarkers of past exposure. Moreover, compared to methylation, the weak association of maternal smoking in pregnancy with gene expression suggests different reversal rates and a methylation-based memory to past exposures. Finally, certain metabolites and protein markers evidenced potential early biological effects of postnatal SHS, such as fibrinolysis.


Assuntos
Biomarcadores/sangue , Metilação de DNA/genética , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Poluição por Fumaça de Tabaco/efeitos adversos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez
15.
J Proteome Res ; 19(8): 3326-3339, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32544340

RESUMO

Methotrexate (MTX) is a chemotherapeutic agent that can cause a range of toxic side effects including gastrointestinal damage, hepatotoxicity, myelosuppression, and nephrotoxicity and has potentially complex interactions with the gut microbiome. Following untargeted UPLC-qtof-MS analysis of urine and fecal samples from male Sprague-Dawley rats administered at either 0, 10, 40, or 100 mg/kg of MTX, dose-dependent changes in the endogenous metabolite profiles were detected. Semiquantitative targeted UPLC-MS detected MTX excreted in urine as well as MTX and two metabolites, 2,4-diamino-N-10-methylpteroic acid (DAMPA) and 7-hydroxy-MTX, in the feces. DAMPA is produced by the bacterial enzyme carboxypeptidase glutamate 2 (CPDG2) in the gut. Microbiota profiling (16S rRNA gene amplicon sequencing) of fecal samples showed an increase in the relative abundance of Firmicutes over the Bacteroidetes at low doses of MTX but the reverse at high doses. Firmicutes relative abundance was positively correlated with DAMPA excretion in feces at 48 h, which were both lower at 100 mg/kg compared to that seen at 40 mg/kg. Overall, chronic exposure to MTX appears to induce community and functionality changes in the intestinal microbiota, inducing downstream perturbations in CPDG2 activity, and thus may delay MTX detoxication to DAMPA. This reduction in metabolic clearance might be associated with increased gastrointestinal toxicity.


Assuntos
Microbioma Gastrointestinal , Metotrexato , Animais , Cromatografia Líquida , Fezes , Masculino , Metotrexato/toxicidade , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
16.
Bioanalysis ; 12(7): 485-500, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32343149

RESUMO

A U(H)PLC-MS/MS method is described for the analysis of acetaminophen and its sulphate, glucuronide, glutathione, cysteinyl and N-acetylcysteinyl metabolites in plasma using stable isotope-labeled internal standards. P-Aminophenol glucuronide and 3-methoxyacetaminophen were monitored and semi-quantified using external standards. The assay takes 7.5 min/sample, requires only 5 µl of plasma and involves minimal sample preparation. The method was validated for rat plasma and cross validated for human and pig plasma and mouse serum. LOQ in plasma for these analytes were 0.44 µg/ml (APAP-C), 0.58 µg/ml (APAP-SG), 0.84 µg/ml (APAP-NAC), 2.75 µg/ml (APAP-S), 3.00 µg/ml (APAP-G) and 16 µg/ml (APAP). Application of the method is illustrated by the analysis of plasma following oral administration of APAP to male Han Wistar rats.


Assuntos
Acetaminofen/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Plasma/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Humanos , Ratos , Ratos Wistar , Suínos
17.
Br J Pharmacol ; 177(8): 1709-1718, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32022252

RESUMO

Proteolysis-targeting chimeras are a new drug modality that exploits the endogenous ubiquitin proteasome system to degrade a protein of interest for therapeutic benefit. As the first-generation of proteolysis-targeting chimeras have now entered clinical trials for oncology indications, it is timely to consider the theoretical safety risks inherent with this modality which include off-target degradation, intracellular accumulation of natural substrates for the E3 ligases used in the ubiquitin proteasome system, proteasome saturation by ubiquitinated proteins, and liabilities associated with the "hook effect" of proteolysis-targeting chimeras This review describes in vitro and non-clinical in vivo data that provide mechanistic insight of these safety risks and approaches being used to mitigate these risks in the next generation of proteolysis-targeting chimera molecules to extend therapeutic applications beyond life-threatening diseases.


Assuntos
Quimera , Preparações Farmacêuticas , Quimera/metabolismo , Complexo de Endopeptidases do Proteassoma , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
18.
Toxicol Sci ; 175(1): 87-97, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32061126

RESUMO

The metabolic fate, toxicity, and effects on endogenous metabolism of paracetamol (acetaminophen, APAP) in 22 female Landrace cross large white pigs were evaluated in a model of acute liver failure (ALF). Anesthetized pigs were initially dosed at 250 mg/kg via an oroduodenal tube with APAP serum concentrations maintained above 300 mg/l using maintenance doses of 0.5-4 g/h until ALF. Studies were undertaken to determine both the metabolic fate of APAP and its effects on the endogenous metabolic phenotype of ALF in using 1H NMR spectroscopy. Increased concentrations of citrate combined with pre-ALF increases in circulating lactate, pyruvate, and alanine in plasma suggest mitochondrial dysfunction and a switch in hepatic energy metabolism to glycolysis in response to APAP treatment. A specific liquid chromatography-tandem mass spectrometry assay was used to quantify APAP and metabolites. The major circulating and urinary metabolite of APAP was the phenolic glucuronide (APAP-G), followed by p-aminophenol glucuronide (PAP-G) formed from N-deacetylated APAP. The PAP produced by N-deacetylation was the likely cause of the methemoglobinemia and kidney toxicity observed in this, and previous, studies in the pig. The phenolic sulfate of APAP, and the glutathione-derived metabolites of the drug were only found as minor components (with the cysteinyl conjugate detected but not the mercapturate). Given its low sulfation, combined with significant capacity for N-deacetylation the pig may represent a poor translational model for toxicology studies for compounds undergoing significant metabolism by sulfation, or which contain amide bonds which when hydrolyzed to unmask an aniline lead to toxicity. However, the pig may provide a useful model where extensive amide hydrolysis is seen for drugs or environmental chemicals in humans, but not in, eg, the rat and dog which are the preclinical species normally employed for safety assessment.


Assuntos
Acetaminofen/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Falência Hepática/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Acetaminofen/toxicidade , Animais , Biotransformação , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cromatografia Líquida , Modelos Animais de Doenças , Feminino , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Falência Hepática/induzido quimicamente , Falência Hepática/patologia , Metaboloma , Metabolômica , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/patologia , Espectroscopia de Prótons por Ressonância Magnética , Sus scrofa , Espectrometria de Massas em Tandem , Distribuição Tecidual
19.
J Chromatogr A ; 1602: 386-396, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31285057

RESUMO

A comprehensive Collision Cross Section (CCS) library was obtained via Travelling Wave Ion Guide mobility measurements through direct infusion (DI). The library consists of CCS and Mass Spectral (MS) data in negative and positive ElectroSpray Ionisation (ESI) mode for 463 and 479 endogenous metabolites, respectively. For both ionisation modes combined, TWCCSN2 data were obtained for 542 non-redundant metabolites. These data were acquired on two different ion mobility enabled orthogonal acceleration QToF MS systems in two different laboratories, with the majority of the resulting TWCCSN2 values (from detected compounds) found to be within 1% of one another. Validation of these results against two independent, external TWCCSN2 data sources and predicted TWCCSN2 values indicated to be within 1-2% of these other values. The same metabolites were then analysed using a rapid reversed-phase ultra (high) performance liquid chromatographic (U(H)PLC) separation combined with IM and MS (IM-MS) thus providing retention time (tr), m/z and TWCCSN2 values (with the latter compared with the DI-IM-MS data). Analytes for which TWCCSN2 values were obtained by U(H)PLC-IM-MS showed good agreement with the results obtained from DI-IM-MS. The repeatability of the TWCCSN2 values obtained for these metabolites on the different ion mobility QToF systems, using either DI or LC, encouraged the further evaluation of the U(H)PLC-IM-MS approach via the analysis of samples of rat urine, from control and methotrexate-treated animals, in order to assess the potential of the approach for metabolite identification and profiling in metabolic phenotyping studies. Based on the database derived from the standards 63 metabolites were identified in rat urine, using positive ESI, based on the combination of tr, TWCCSN2 and MS data.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Metaboloma , Urina/química , Aminas/análise , Animais , Calibragem , Aprendizado de Máquina , Ratos , Padrões de Referência
20.
Metabolomics ; 15(2): 17, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30830424

RESUMO

INTRODUCTION: As large scale metabolic phenotyping is increasingly employed in preclinical studies and in the investigation of human health and disease the current LC-MS/MS profiling methodologies adopted for large sample sets can result in lengthy analysis times, putting strain on available resources. As a result of these pressures rapid methods of untargeted analysis may have value where large numbers of samples require screening. OBJECTIVES: To develop, characterise and evaluate a rapid UHP-HILIC-MS-based method for the analysis of polar metabolites in rat urine and then extend the capabilities of this approach by the addition of IMS to the system. METHODS: A rapid untargeted HILIC LC-MS/MS profiling method for the analysis of small polar molecules has been developed. The 3.3 min separation used a Waters BEH amide (1 mm ID) analytical column on a Waters Synapt G2-Si Q-Tof enabled with ion mobility spectrometry (IMS). The methodology, was applied to the metabolic profiling of a series of rodent urine samples from vehicle-treated control rats and animals administered tienilic acid. The same separation was subsequently linked to IMS and MS to evaluate the benefits that IMS might provide for metabolome characterisation. RESULTS: The rapid HILIC-MS method was successfully applied to rapid analysis of rat urine and found, based on the data generated from the data acquired for the pooled quality control samples analysed at regular intervals throughout the analysis, to be robust. Peak area and retention times for the compounds detected in these samples showed good reproducibility across the batch. When used to profile the urine samples obtained from vehicle-dosed control and those administered tienilic acid the HILIC-MS method detected 3007 mass/retention time features. Analysis of the same samples using HILIC-IMS-MS enabled the detection of 6711 features. Provisional metabolite identification for a number of compounds was performed using the high collision energy MS/MS information compared against the Metlin MS/MS database and, in addition, both calculated and measured CCS values from an experimentally derived CCS database. CONCLUSION: A rapid metabolic profiling method for the analysis of polar metabolites has been developed. The method has the advantages of speed and both reducing sample and solvent consumption compared to conventional profiling methods. The addition of IMS added an additional dimension for feature detection and the identification of metabolites.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Metabolômica/métodos , Urina/química , Animais , Líquidos Corporais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Humanos , Masculino , Metaboloma , Controle de Qualidade , Ratos/urina , Ratos Sprague-Dawley/urina , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA