Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Microvasc Res ; 155: 104706, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871050

RESUMO

Prior work has yet to determine whether the reduction of dietary nitrate (NO3-) to NO, via the enterosalivary pathway, may modify cutaneous vascular conductance (CVC) responses to local heating in older women. Changes occurring with the transition to menopause related to hormonal flux, increased adiposity, and/or decreased physical activity may further compound the negative influence of aging on nitric oxide (NO)-dependent CVC. Herein, we characterized changes in NO-dependent CVC following acute ingestion of 140 mL of NO3--rich beetroot juice in 24 older women (age: 65 ± 5 y, BMI: 31.2 ± 3.7 kg/m2). Red blood cell (RBC) flux was measured continuously via laser-Doppler flowmetry on the dorsal aspect of the forearm during local skin heating to 39 °C/44 °C before and 3 h after NO3- ingestion. NO-dependent changes in CVC were calculated as RBC flux/mean arterial blood pressure at 39 °C and normalized as a proportion of maximal CVC at 44 °C (%CVCmax). Changes (Δ) in fractional exhaled NO (FeNO) following NO3- ingestion were used an index of NO bioavailability. Despite increased FeNO (+81 ± 70 %, P < 0.001), %CVCmax at 39 °C was reduced (-16 ± 10 %, P < 0.001) following NO3- ingestion. A greater reduction in %CVCmax was weakly to moderately associated with higher body fat% (r = 0.45 [0.05-0.72], P = 0.029), central adiposity% (r = 0.50 [0.13-0.75], P = 0.012), neutrophil% (r = 0.42 [0.02-0.70], P = 0.041), and higher neutrophil to lymphocyte ratio (r = 0.49 [0.11-0.75], P = 0.016). These findings demonstrate a single dose of dietary NO3- does not promote CVC responses to local heating in sedentary older women with overweight and obesity. Correlation with multiple biomarkers suggest systemic inflammation may be involved.

2.
Front Nutr ; 11: 1347242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445207

RESUMO

This mini-review summarizes the comparative effects of different sources of dietary nitrate (NO3-), beetroot juice (BRJ) and nitrate salts (NIT), on physiological function and exercise capacity. Our objectives were to determine whether BRJ is superior to NIT in enhancing exercise-related outcomes, and to explore the potential contribution of other putatively beneficial compounds in BRJ beyond NO3-. We conducted a comparative analysis of recent studies focused on the impact of BRJ versus NIT on submaximal oxygen consumption (VO2), endurance performance, adaptations to training, and recovery from muscle-damaging exercise. While both NO3- sources provide benefits, there is some evidence that BRJ may offer additional advantages, specifically in reducing VO2 during high-intensity exercise, magnifying performance improvements with training, and improving recovery post-exercise. These reported differences could be due to the hypothesized antioxidant and/or anti-inflammatory properties of BRJ resulting from the rich spectrum of phytonutrients it contains. However, significant limitations to published studies directly comparing BRJ and NIT make it quite challenging to draw any firm conclusions. We provide recommendations to help guide further research into the important question of whether there is more to the story of BRJ than just NO3-.

3.
Sci Rep ; 14(1): 1029, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200207

RESUMO

We evaluated biochemical changes in skeletal muscle of women with breast cancer initiating aromatase inhibitors (AI), including oxidation of ryanodine receptor RyR1 and loss of stabilizing protein calstabin1, and detailed measures of muscle function. Fifteen postmenopausal women with stage I-III breast cancer planning to initiate AI enrolled. Quadriceps muscle biopsy, dual-energy x-ray absorptiometry, isokinetic dynamometry, Short Physical Performance Battery, grip strength, 6-min walk, patient-reported outcomes, and serologic measures of bone turnover were assessed before and after 6 months of AI. Post-AI exposure, oxidation of RyR1 significantly increased (0.23 ± 0.37 vs. 0.88 ± 0.80, p < 0.001) and RyR1-bound calstabin1 significantly decreased (1.69 ± 1.53 vs. 0.74 ± 0.85, p < 0.001), consistent with dysfunctional calcium channels in skeletal muscle. Grip strength significantly decreased at 6 months. No significant differences were seen in isokinetic dynamometry measures of muscle contractility, fatigue resistance, or muscle recovery post-AI exposure. However, there was significant correlation between oxidation of RyR1 with muscle power (r = 0.60, p = 0.02) and muscle fatigue (r = 0.57, p = 0.03). Estrogen deprivation therapy for breast cancer resulted in maladaptive changes in skeletal muscle, consistent with the biochemical signature of dysfunctional RyR1 calcium channels. Future studies will evaluate longer trajectories of muscle function change and include other high bone turnover states, such as bone metastases.


Assuntos
Neoplasias da Mama , Canal de Liberação de Cálcio do Receptor de Rianodina , Feminino , Humanos , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Músculo Esquelético , Caminhada
4.
Contemp Clin Trials Commun ; 36: 101208, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37842318

RESUMO

Background: Heart failure (HF) is a debilitating and often fatal disease that affects millions of people worldwide. Diminished nitric oxide synthesis, signaling, and bioavailability are believed to contribute to poor skeletal muscle function and aerobic capacity. The aim of this clinical trial (iNIX-HF) is to determine the acute and longer-term effectiveness of inorganic nitrate supplementation on exercise performance in patients with HF with reduced ejection fraction (HFrEF). Methods: This clinical trial is a double-blind, placebo-controlled, randomized, parallel-arm design study in which patients with HFrEF (n = 75) are randomized to receive 10 mmol potassium nitrate (KNO3) or a placebo capsule daily for 6 wk. Primary outcome measures are muscle power determined by isokinetic dynamometry and peak aerobic capacity (VO2peak) determined during an incremental treadmill exercise test. Endpoints include the acute effects of a single dose of KNO3 and longer-term effects of 6 wk of KNO3. The study is adequately powered to detect expected increases in these outcomes at P < 0.05 with 1-ß>0.80. Discussion: The iNIX-HF phase II clinical trial will evaluate the effectiveness of inorganic nitrate supplements as a new treatment to ameliorate poor exercise capacity in HFrEF. This study also will provide critical preliminary data for a future 'pivotal', phase III, multi-center trial of the effectiveness of nitrate supplements not only for improving exercise performance, but also for improving symptoms and decreasing other major cardiovascular endpoints. The potential public health impact of identifying a new, relatively inexpensive, safe, and effective treatment that improves overall exercise performance in patients with HFrEF is significant.

5.
Am J Physiol Regul Integr Comp Physiol ; 325(2): R227, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467442
7.
Physiol Rep ; 11(10): e15694, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37226336

RESUMO

Older individuals fatigue more rapidly during, and recover more slowly from, dynamic exercise. Women are particularly vulnerable to these deleterious effects of aging, which increases their risk of falling. We have shown that dietary nitrate (NO3 - ), a source of nitric oxide (NO) via the NO3 - → nitrite (NO2 - ) → NO pathway, enhances muscle speed and power in older individuals in the non-fatigued state; however, it is unclear if it reduces fatigability and/or improves recoverability in this population. Using a double-blind, placebo-controlled, crossover design, we studied 18 older (age 70 ± 4 years) women who were administered an acute dose of beetroot juice (BRJ) containing either 15.6 ± 3.6 or <0.05 mmol of NO3 - . Blood samples were drawn throughout each ~3 h visit for plasma NO3 - and NO2 - analysis. Peak torque was measured during, and periodically for 10 min after, 50 maximal knee extensions performed at 3.14 rad/s on an isokinetic dynamometer. Ingestion of NO3 - -containing BRJ increased plasma NO3 - and NO2 - concentrations by 21 ± 8 and 4 ± 4 fold, respectively. However, there were no differences in muscle fatigue or recovery. Dietary NO3 - increases plasma NO3 - and NO2 - concentrations but does not reduce fatigability during or enhance recoverability after high intensity exercise in older women.


Assuntos
Fadiga Muscular , Nitratos , Feminino , Humanos , Idoso , Dióxido de Nitrogênio , Músculo Esquelético , Antioxidantes , Fadiga , Óxido Nítrico , Suplementos Nutricionais
8.
Nitric Oxide ; 138-139: 34-41, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244392

RESUMO

We have previously demonstrated that acute ingestion of inorganic nitrate (NO3-)-rich beetroot juice (BRJ), a source of nitric oxide (NO) via the NO3- → nitrite (NO2-) → NO pathway, can improve muscle speed and power in older individuals. It is not known, however, whether this effect is maintained or perhaps even enhanced with repeated ingestion, or if tolerance develops as with organic nitrates, e.g., nitroglycerin. Using a double-blind, placebo-controlled, crossover design, we therefore studied 16 community-dwelling older (age 71 ± 5 y) individuals after both acute and short-term (i.e., daily for 2 wk) BRJ supplementation. Blood samples were drawn and blood pressure was measured periodically during each ∼3 h experiment, with muscle function determined using isokinetic dynamometry. Acute ingestion of BRJ containing 18.2 ± 6.2 mmol of NO3- increased plasma NO3- and NO2- concentrations 23 ± 11 and 2.7 ± 2.1-fold over placebo, respectively. This was accompanied by 5 ± 11% and 7 ± 13% increases in maximal knee extensor speed (Vmax) and power (Pmax), respectively. After daily supplementation for 2 wk, BRJ ingestion elevated NO3- and NO2- levels 24 ± 12 and 3.3 ± 4.0-fold, respectively, whereas Vmax and Pmax were 7 ± 9% and 9 ± 11% higher than baseline. No changes were observed in blood pressure or in plasma markers of oxidative stress with either acute or short-term NO3- supplementation. We conclude that both acute and short-term dietary NO3- supplementation result in similar improvements in muscle function in older individuals. The magnitudes of these improvements are sufficient to offset the decline resulting from a decade or more of aging and are therefore likely to be clinically significant.


Assuntos
Beta vulgaris , Dióxido de Nitrogênio , Masculino , Humanos , Feminino , Idoso , Pressão Sanguínea , Suplementos Nutricionais , Nitratos , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo , Método Duplo-Cego , Estudos Cross-Over , Sucos de Frutas e Vegetais
9.
medRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824817

RESUMO

Older individuals fatigue more rapidly during, and recover more slowly from, dynamic exercise. Women are particularly vulnerable to these deleterious effects of aging, which increases their risk of falling. We have shown that dietary nitrate (NO 3 - ), a source of nitric oxide (NO) via the NO 3 - → nitrite (NO 2 - ) → NO pathway, enhances muscle speed and power in older individuals in the non-fatigued state; however, it is unclear if it reduces fatigability and/or improves recoverability in this population. Using a double-blind, placebo-controlled, crossover design, we studied 18 older (age 70 ± 4 y) women who were administered an acute dose of beetroot juice (BRJ) containing either 15.6±3.6 or <0.05 mmol of NO 3 - . Blood samples were drawn throughout each ∼3 h visit for plasma NO 3 - and NO 2 - analysis. Peak torque was measured during, and periodically for 10 min after, 50 maximal knee extensions performed at 3.14 rad/s on an isokinetic dynamometer. Ingestion of NO 3 - -containing BRJ increased plasma NO 3 - and NO 2 - concentrations by 21±8 and 4±4 fold, respectively. However, there were no differences in muscle fatigue or recovery. Dietary NO 3 - increases plasma NO 3 - and NO 2 - concentrations but does not reduce fatigability during or enhance recoverability after high intensity exercise in older women.

10.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R561-R570, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36036455

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by exercise intolerance. Muscle blood flow may be reduced during exercise in PAH; however, this has not been directly measured. Therefore, we investigated blood flow during exercise in a rat model of monocrotaline (MCT)-induced pulmonary hypertension (PH). Male Sprague-Dawley rats (∼200 g) were injected with 60 mg/kg MCT (MCT, n = 23) and vehicle control (saline; CON, n = 16). Maximal rate of oxygen consumption (V̇o2max) and voluntary running were measured before PH induction. Right ventricle (RV) morphology and function were assessed via echocardiography and invasive hemodynamic measures. Treadmill running at 50% V̇o2max was performed by a subgroup of rats (MCT, n = 8; CON, n = 7). Injection of fluorescent microspheres determined muscle blood flow via photo spectroscopy. MCT demonstrated a severe phenotype via RV hypertrophy (Fulton index, 0.61 vs. 0.31; P < 0.001), high RV systolic pressure (51.5 vs. 22.4 mmHg; P < 0.001), and lower V̇o2max (53.2 vs. 71.8 mL·min-1·kg-1; P < 0.0001) compared with CON. Two-way ANOVA revealed exercising skeletal muscle blood flow relative to power output was reduced in MCT compared with CON (P < 0.001), and plasma lactate was increased in MCT (10.8 vs. 4.5 mmol/L; P = 0.002). Significant relationships between skeletal blood flow and blood lactate during exercise were observed for individual muscles (r = -0.58 to -0.74; P < 0.05). No differences in capillarization were identified. Skeletal muscle blood flow is significantly reduced in experimental PH. Reduced blood flow during exercise may be, at least in part, consequent to reduced exercise intensity in PH. This adds further evidence of peripheral muscle dysfunction and exercise intolerance in PAH.


Assuntos
Hipertensão Pulmonar , Animais , Masculino , Ratos , Modelos Animais de Doenças , Hemodinâmica , Hipertensão Pulmonar/induzido quimicamente , Lactatos , Monocrotalina/toxicidade , Músculo Esquelético , Artéria Pulmonar , Ratos Sprague-Dawley
12.
J Am Heart Assoc ; 11(14): e025656, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35861826

RESUMO

Background The transition to dialysis period carries a substantial increased cardiovascular risk in patients with chronic kidney disease. Despite this, alterations in cardiovascular functional capacity during this transition are largely unknown. The present study therefore sought to assess ventilatory exercise response measures in patients within 1 year of initiating dialysis. Methods and Results We conducted a cross-sectional study of 241 patients with chronic kidney disease stage 5 from the CAPER (Cardiopulmonary Exercise Testing in Renal Failure) study and from the intradialytic low-frequency electrical muscle stimulation pilot randomized controlled trial cohorts. Patients underwent cardiopulmonary exercise testing and echocardiography. Of the 241 patients (age, 48.9 [15.0] years; 154 [63.9%] men), 42 were predialytic (mean estimated glomerular filtration rate, 14 mL·min-1·1.73 m-2), 54 had a dialysis vintage ≤12 months, and 145 had a dialysis vintage >12 months. Dialysis vintage ≤12 months exhibited a significantly impaired cardiovascular functional capacity, as assessed by oxygen uptake at peak exercise (18.7 [5.8] mL·min-1·kg-1) compared with predialysis (22.7 [5.2] mL·min-1·kg-1; P<0.001). Dialysis vintage ≤12 months also exhibited reduced peak workload, impaired peak heart rate, reduced circulatory power, and increased left ventricular mass index (P<0.05 for all) compared with predialysis. After excluding those with prior kidney transplant, dialysis vintage >12 months exhibited a lower oxygen uptake at peak exercise (17.0 [4.9] mL·min-1·kg-1) compared with dialysis vintage ≤12 months (18.9 [5.9] mL·min-1·kg-1; P=0.033). Conclusions Initiating dialysis is associated with a significant impairment in oxygen uptake at peak exercise and overall decrements in ventilatory and hemodynamic exercise responses that predispose patients to functional dependence. The magnitude of these changes is comparable to the differences between low-risk New York Heart Association class I and higher-risk New York Heart Association class II to IV heart failure.


Assuntos
Insuficiência Cardíaca , Falência Renal Crônica , Insuficiência Renal Crônica , Estudos Transversais , Teste de Esforço , Tolerância ao Exercício , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Humanos , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Oxigênio , Consumo de Oxigênio , Diálise Renal/efeitos adversos , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/terapia
13.
Front Physiol ; 13: 872719, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721565

RESUMO

Despite advances over the past few decades, heart failure with reduced ejection fraction (HFrEF) remains not only a mortal but a disabling disease. Indeed, the New York Heart Association classification of HFrEF severity is based on how much exercise a patient can perform. Moreover, exercise capacity-both aerobic exercise performance and muscle power-are intimately linked with survival in patients with HFrEF. This review will highlight the pathologic changes in skeletal muscle in HFrEF that are related to impaired exercise performance. Next, it will discuss the key role that impaired nitric oxide (NO) bioavailability plays in HFrEF skeletal muscle pathology. Lastly, it will discuss intriguing new data suggesting that the inorganic nitrate 'enterosalivary pathway' may be leveraged to increase NO bioavailability via ingestion of inorganic nitrate. This ingestion of inorganic nitrate has several advantages over organic nitrate (e.g., nitroglycerin) and the endogenous nitric oxide synthase pathway. Moreover, inorganic nitrate has been shown to improve exercise performance: both muscle power and aerobic capacity, in some recent small but well-controlled, cross-over studies in patients with HFrEF. Given the critical importance of better exercise performance for the amelioration of disability as well as its links with improved outcomes in patients with HFrEF, further studies of inorganic nitrate as a potential novel treatment is critical.

14.
Nitric Oxide ; 122-123: 54-61, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35405336

RESUMO

Nitric oxide (NO) is complex modulator of skeletal muscle contractile function, capable of increasing or decreasing force and power output depending on multiple factors. This review explores the effects and potential mechanisms for modulation of skeletal muscle contractile function by NO, from pharmacological agents in isolated muscle preparations to dietary nitrate supplementation in humans and animals. Pharmacological manipulation in vitro suggests that NO signaling diminishes submaximal isometric force, whereas dietary manipulation in vivo suggest that NO enhances submaximal force. The bases for these different responses are unknown but could reflect dose-dependent effects. Maximal isometric force is unaffected by physiologically relevant levels of NO, which do not induce overt protein oxidation. Pharmacological and dietary manipulation of NO signaling enhances the maximal rate of isometric force development, unloaded shortening velocity, and peak power. We hypothesize that these effects are mediated by post-translational modifications of myofibrillar proteins that modulate thick filament regulation of contraction (e.g., mechanosensing and strain-dependence of cross-bridge kinetics). NO effects on contractile function appear to have some level of fiber type and sex-specificity. The mechanisms behind NO-mediated changes in skeletal muscle function need to be explored through proteomics analysis and advanced biophysical assays to advance the development of small molecules and open intriguing therapeutic and ergogenic possibilities for aging, disease, and athletic performance.


Assuntos
Contração Muscular , Óxido Nítrico , Animais , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Sarcômeros
15.
J Int Soc Sports Nutr ; 18(1): 66, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34625064

RESUMO

BACKGROUND: Previous narrative reviews have concluded that dietary nitrate (NO3-) improves maximal neuromuscular power in humans. This conclusion, however, was based on a limited number of studies, and no attempt has been made to quantify the exact magnitude of this beneficial effect. Such information would help ensure adequate statistical power in future studies and could help place the effects of dietary NO3- on various aspects of exercise performance (i.e., endurance vs. strength vs. power) in better context. We therefore undertook a systematic review and individual participant data meta-analysis to quantify the effects of NO3- supplementation on human muscle power. METHODS: The literature was searched using a strategy developed by a health sciences librarian. Data sources included Medline Ovid, Embase, SPORTDiscus, Scopus, Clinicaltrials.gov , and Google Scholar. Studies were included if they used a randomized, double-blind, placebo-controlled, crossover experimental design to measure the effects of dietary NO3- on maximal power during exercise in the non-fatigued state and the within-subject correlation could be determined from data in the published manuscript or obtained from the authors. RESULTS: Nineteen studies of a total of 268 participants (218 men, 50 women) met the criteria for inclusion. The overall effect size (ES; Hedge's g) calculated using a fixed effects model was 0.42 (95% confidence interval (CI) 0.29, 0.56; p = 6.310 × 10- 11). There was limited heterogeneity between studies (i.e., I2 = 22.79%, H2 = 1.30, p = 0.3460). The ES estimated using a random effects model was therefore similar (i.e., 0.45, 95% CI 0.30, 0.61; p = 1.064 × 10- 9). Sub-group analyses revealed no significant differences due to subject age, sex, or test modality (i.e., small vs. large muscle mass exercise). However, the ES in studies using an acute dose (i.e., 0.54, 95% CI 0.37, 0.71; p = 6.774 × 10- 12) was greater (p = 0.0211) than in studies using a multiple dose regimen (i.e., 0.22, 95% CI 0.01, 0.43; p = 0.003630). CONCLUSIONS: Acute or chronic dietary NO3- intake significantly increases maximal muscle power in humans. The magnitude of this effect-on average, ~ 5%-is likely to be of considerable practical and clinical importance.


Assuntos
Desempenho Atlético/fisiologia , Suplementos Nutricionais , Força Muscular , Nitratos/administração & dosagem , Método Duplo-Cego , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
17.
Contemp Clin Trials Commun ; 21: 100693, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33392416

RESUMO

BACKGROUND: Postmenopausal women exhibit higher rates of disability and cardiovascular disease (CVD) with aging compared to men. Whereas habitual exercise training is a known strategy to enhance physiologic function in men and premenopausal women, exercise-related adaptations are often modest in postmenopausal women. We propose dietary nitrate (beetroot juice) administered prior to exercise training may be a feasible approach to improve mobility and cardio-metabolic health outcomes in postmenopausal women. METHODS: Our randomized, placebo-controlled study aims to determine preliminary effects sizes for changes in functional mobility and endothelium-dependent vasodilation across three study arms: exercise only (EX), exercise + placebo (EX + PL), and exercise + beetroot (EX + BR). Thirty-six postmenopausal women are recruited in small cohorts wherein group exercise is implemented to facilitate social support and adherence to an 8-week training progression. Participants are randomized to one of three study arms (n = 12 per group) following baseline assessments. Post-intervention assessments are used to determine pre-post changes in outcome measures including distance covered during a 6 min walk test, walking economy, muscle speed and power, and endothelial-dependent vasodilation as determined by flow-mediated dilation. Measures of feasibility include recruitment, retention, adherence to exercise prescription, perceived exercise session difficulty, and adverse event rates. DISCUSSION: Evidence-based, translational strategies are needed to optimize exercise training-related adaptations in postmenopausal women. Findings will inform larger randomized clinical trials to determine if pre-exercise consumption of beetroot juice is an efficacious strategy to promote mobility and attenuate CVD disease risk.

18.
Front Rehabil Sci ; 2: 807123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36188832

RESUMO

Sarcopenia and impaired cardiorespiratory fitness are commonly observed in older individuals and patients with chronic kidney disease (CKD). Declines in skeletal muscle function and aerobic capacity can progress into impaired physical function and inability to perform activities of daily living. Physical function is highly associated with important clinical outcomes such as hospitalization, functional independence, quality of life, and mortality. While lifestyle modifications such as exercise and dietary interventions have been shown to prevent and reverse declines in physical function, the utility of these treatment strategies is limited by poor widespread adoption and adherence due to a wide variety of both perceived and actual barriers to exercise. Therefore, identifying novel treatment targets to manage physical function decline is critically important. Klotho, a remarkable protein with powerful anti-aging properties has recently been investigated for its role in musculoskeletal health and physical function. Klotho is involved in several key processes that regulate skeletal muscle function, such as muscle regeneration, mitochondrial biogenesis, endothelial function, oxidative stress, and inflammation. This is particularly important for older adults and patients with CKD, which are known states of Klotho deficiency. Emerging data support the existence of Klotho-related benefits to exercise and for potential Klotho-based therapeutic interventions for the treatment of sarcopenia and its progression to physical disability. However, significant gaps in our understanding of Klotho must first be overcome before we can consider its potential ergogenic benefits. These advances will be critical to establish the optimal approach to future Klotho-based interventional trials and to determine if Klotho can regulate physical dysfunction.

19.
J Gerontol A Biol Sci Med Sci ; 76(4): 591-598, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33301009

RESUMO

We have recently demonstrated that dietary nitrate, a source of nitric oxide (NO) via the nitrate → nitrite → NO enterosalivary pathway, can improve muscle contractility in healthy older men and women. Nitrate ingestion has also been shown to reduce blood pressure in some, but not all, studies of older individuals. However, the optimal dose for eliciting these beneficial effects is unknown. A pilot randomized, double-blind, placebo-controlled crossover study was therefore performed to determine the effects of ingesting 3.3 mL/kg of concentrated beetroot juice containing 0, 200, or 400 µmol/kg of nitrate in 9 healthy older subjects (mean age 70 ± 1 years). Maximal knee extensor power (Pmax) and speed (Vmax) were measured ~2.5 hours after nitrate ingestion using isokinetic dynamometry. Blood pressure was monitored periodically throughout each study. Pmax (in W/kg) was higher (p < .05) after the lower dose (3.9 ± 0.4) compared to the placebo (3.7 ± 0.4) or higher dose (3.7 ± 0.4). Vmax (in rad/s) also tended to be higher (p = .08) after the lower dose (11.9 ± 0.7) compared to the placebo (10.8 ± 0.8) or higher dose (11.2 ± 0.8). Eight out of 9 subjects achieved a higher Pmax and Vmax after the lower versus the higher dose. These dose-related changes in muscle contractility generally paralleled changes in breath NO levels. No significant changes were found in systolic, diastolic, or mean arterial blood pressure. A lower dose of nitrate increases muscle speed and power in healthy older individuals, but these improvements are lost at a higher dose. Blood pressure, on the other hand, is not reduced even with a higher dose.


Assuntos
Beta vulgaris , Relação Dose-Resposta a Droga , Contração Muscular/efeitos dos fármacos , Nitratos/farmacologia , Óxido Nítrico , Idoso , Pressão Sanguínea/efeitos dos fármacos , Testes Respiratórios/métodos , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Sucos de Frutas e Vegetais , Voluntários Saudáveis , Humanos , Masculino , Monitorização Fisiológica/métodos , Óxido Nítrico/análise , Óxido Nítrico/metabolismo , Avaliação de Resultados em Cuidados de Saúde , Compostos Fitoquímicos/farmacologia , Projetos Piloto
20.
Pharm Res ; 37(12): 235, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33140122

RESUMO

PURPOSE: The pharmacokinetic properties of plasma NO3- and its reduced metabolite, NO2-, have been separately described, but there has been no reported attempt to simultaneously model their pharmacokinetics following NO3- ingestion. This report describes development of such a model from retrospective analyses of concentrations largely obtained from primary endpoint efficacy trials. METHODS: Linear and non-linear mixed effects analyses were used to statistically define concentration dependency on time, dose, as well as patient and study variables, and to integrate NO3- and NO2- concentrations from studies conducted at different times, locations, patient groups, and several studies in which sample range was limited to a few hours. Published pharmacokinetic studies for both substances were used to supplement model development. RESULTS: A population pharmacokinetic model relating NO3- and NO2- concentrations was developed. The model incorporated endogenous levels of the two entities, and determined these were not influenced by exogenous NO3- delivery. Covariate analysis revealed intersubject variability in NO3- exposure was partially described by body weight differences influencing volume of distribution. The model was applied to visualize exposure versus response (muscle contraction performance) in individual patients. CONCLUSIONS: Extension of the present first-generation model, to ultimately optimize NO3- dose versus pharmacological effects, is warranted.


Assuntos
Suplementos Nutricionais , Modelos Biológicos , Nitratos/farmacocinética , Nitritos/farmacocinética , Administração Oral , Idoso , Envelhecimento/metabolismo , Disponibilidade Biológica , Peso Corporal , Estudos Cross-Over , Feminino , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/dietoterapia , Insuficiência Cardíaca/metabolismo , Humanos , Masculino , Nitratos/administração & dosagem , Nitratos/metabolismo , Nitritos/metabolismo , Estudos Retrospectivos , Sarcopenia/sangue , Sarcopenia/dietoterapia , Sarcopenia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA