Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell Rep Med ; 2(1): 100188, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33521702

RESUMO

Chordomas are rare spinal tumors addicted to expression of the developmental transcription factor brachyury. In chordomas, brachyury is super-enhancer associated and preferentially downregulated by pharmacologic transcriptional CDK inhibition, leading to cell death. To understand the underlying basis of this sensitivity, we dissect the brachyury transcription regulatory network and compare the consequences of brachyury degradation with transcriptional CDK inhibition. Brachyury defines the chordoma super-enhancer landscape and autoregulates through binding its super-enhancer, and its locus forms a transcriptional condensate. Transcriptional CDK inhibition and brachyury degradation disrupt brachyury autoregulation, leading to loss of its transcriptional condensate and transcriptional program. Compared with transcriptional CDK inhibition, which globally downregulates transcription, leading to cell death, brachyury degradation is much more selective, inducing senescence and sensitizing cells to anti-apoptotic inhibition. These data suggest that brachyury downregulation is a core tenet of transcriptional CDK inhibition and motivates developing strategies to target brachyury and its autoregulatory feedback loop.


Assuntos
Biomarcadores Tumorais/genética , Cordoma/genética , Quinases Ciclina-Dependentes/genética , Proteínas Fetais/genética , Proteínas de Neoplasias/genética , Neoplasias da Coluna Vertebral/genética , Proteínas com Domínio T/genética , Sequência de Bases , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Cordoma/metabolismo , Cordoma/patologia , Quinases Ciclina-Dependentes/metabolismo , Proteínas Fetais/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Células HEK293 , Histonas/genética , Histonas/metabolismo , Humanos , Queratina-18/genética , Queratina-18/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas de Neoplasias/metabolismo , Proteólise , Transdução de Sinais , Neoplasias da Coluna Vertebral/metabolismo , Neoplasias da Coluna Vertebral/patologia , Proteínas com Domínio T/metabolismo
2.
Nat Med ; 25(2): 292-300, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664779

RESUMO

Chordoma is a primary bone cancer with no approved therapy1. The identification of therapeutic targets in this disease has been challenging due to the infrequent occurrence of clinically actionable somatic mutations in chordoma tumors2,3. Here we describe the discovery of therapeutically targetable chordoma dependencies via genome-scale CRISPR-Cas9 screening and focused small-molecule sensitivity profiling. These systematic approaches reveal that the developmental transcription factor T (brachyury; TBXT) is the top selectively essential gene in chordoma, and that transcriptional cyclin-dependent kinase (CDK) inhibitors targeting CDK7/12/13 and CDK9 potently suppress chordoma cell proliferation. In other cancer types, transcriptional CDK inhibitors have been observed to downregulate highly expressed, enhancer-associated oncogenic transcription factors4,5. In chordoma, we find that T is associated with a 1.5-Mb region containing 'super-enhancers' and is the most highly expressed super-enhancer-associated transcription factor. Notably, transcriptional CDK inhibition leads to preferential and concentration-dependent downregulation of cellular brachyury protein levels in all models tested. In vivo, CDK7/12/13-inhibitor treatment substantially reduces tumor growth. Together, these data demonstrate small-molecule targeting of brachyury transcription factor addiction in chordoma, identify a mechanism of T gene regulation that underlies this therapeutic strategy, and provide a blueprint for applying systematic genetic and chemical screening approaches to discover vulnerabilities in genomically quiet cancers.


Assuntos
Cordoma/metabolismo , Proteínas Fetais/metabolismo , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Proliferação de Células/efeitos dos fármacos , Cordoma/genética , Cordoma/patologia , Quinases Ciclina-Dependentes/metabolismo , Regulação para Baixo/efeitos dos fármacos , Genes Essenciais , Humanos , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia
3.
Nat Commun ; 8(1): 890, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026114

RESUMO

Chordoma is a malignant, often incurable bone tumour showing notochordal differentiation. Here, we defined the somatic driver landscape of 104 cases of sporadic chordoma. We reveal somatic duplications of the notochordal transcription factor brachyury (T) in up to 27% of cases. These variants recapitulate the rearrangement architecture of the pathogenic germline duplications of T that underlie familial chordoma. In addition, we find potentially clinically actionable PI3K signalling mutations in 16% of cases. Intriguingly, one of the most frequently altered genes, mutated exclusively by inactivating mutation, was LYST (10%), which may represent a novel cancer gene in chordoma.Chordoma is a rare often incurable malignant bone tumour. Here, the authors investigate driver mutations of sporadic chordoma in 104 cases, revealing duplications in notochordal transcription factor brachyury (T), PI3K signalling mutations, and mutations in LYST, a potential novel cancer gene in chordoma.


Assuntos
Neoplasias Ósseas/genética , Cordoma/genética , Proteínas Fetais/genética , Mutação , Proteínas com Domínio T/genética , Proteínas de Transporte Vesicular/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe Ia de Fosfatidilinositol 3-Quinase , Duplicação Gênica , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Polimorfismo de Nucleotídeo Único
4.
Oncotarget ; 7(43): 69173-69187, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27732951

RESUMO

Glioblastoma multiforme (GBM) carries a poor prognosis and continues to lack effective treatments. Glioblastoma stem cells (GSCs) drive tumor formation, invasion, and drug resistance and, as such, are the focus of studies to identify new therapies for disease control. Here, we identify the involvement of IKK and NF-κB signaling in the maintenance of GSCs. Inhibition of this pathway impairs self-renewal as analyzed in tumorsphere formation and GBM expansion as analyzed in brain slice culture. Interestingly, both the canonical and non-canonical branches of the NF-κB pathway are shown to contribute to this phenotype. One source of NF-κB activation in GBM involves the TGF-ß/TAK1 signaling axis. Together, our results demonstrate a role for the NF-κB pathway in GSCs and provide a mechanistic basis for its potential as a therapeutic target in glioblastoma.


Assuntos
Autorrenovação Celular , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Quinase I-kappa B/genética , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/genética , Interferência de RNA , Ratos , Esferoides Celulares/metabolismo , Técnicas de Cultura de Tecidos , Fator de Crescimento Transformador beta/metabolismo
5.
Genes Cancer ; 5(1-2): 41-55, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24955217

RESUMO

Activating mutations in KRAS are prevalent in cancer, but therapies targeted to oncogenic RAS have been ineffective to date. These results argue that targeting downstream effectors of RAS will be an alternative route for blocking RAS-driven oncogenic pathways. We and others have shown that oncogenic RAS activates the NF-κB transcription factor pathway and that KRAS-induced lung tumorigenesis is suppressed by expression of a degradation-resistant form of the IκBα inhibitor or by genetic deletion of IKKß or the RELA/p65 subunit of NF-κB. Here, genetic and pharmacological approaches were utilized to inactivate IKK in human primary lung epithelial cells transformed by KRAS, as well as KRAS mutant lung cancer cell lines. Administration of the highly specific IKKß inhibitor Compound A (CmpdA) led to NF-κB inhibition in different KRAS mutant lung cells and siRNA-mediated knockdown of IKKα or IKKß reduced activity of the NF-κB canonical pathway. Next, we determined that both IKKα and IKKß contribute to oncogenic properties of KRAS mutant lung cells, particularly when p53 activity is disrupted. Based on these results, CmpdA was tested for potential therapeutic intervention in the Kras-induced lung cancer mouse model (LSL-Kras (G12D)) combined with loss of p53 (LSL-Kras (G12D)/p53 (fl/fl)). CmpdA treatment was well tolerated and mice treated with this IKKß inhibitor presented smaller and lower grade tumors than mice treated with placebo. Additionally, IKKß inhibition reduced inflammation and angiogenesis. These results support the concept of targeting IKK as a therapeutic approach for oncogenic RAS-driven tumors with altered p53 activity.

6.
Mol Cell ; 45(6): 719-30, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22342344

RESUMO

The IκB kinase (IKK) pathway is an essential mediator of inflammatory, oncogenic, and cell stress pathways. Recently IKK was shown to be essential for autophagy induction in mammalian cells independent of its ability to regulate NF-κB, but the mechanism by which this occurs is unclear. Here we demonstrate that the p85 regulatory subunit of PI3K is an IKK substrate, phosphorylated at S690 in vitro and in vivo in response to cellular starvation. Cells expressing p85 S690A or inhibited for IKK activity exhibit increased Akt activity following cell starvation, demonstrating that p85 phosphorylation is required for starvation-induced PI3K feedback inhibition. S690 is in a conserved region of the p85 cSH2 domain, and IKK-mediated phosphorylation of this site results in decreased affinity for tyrosine-phosphorylated proteins and decreased PI3K membrane localization. Finally, leucine deprivation is shown to be necessary and sufficient for starvation-induced, IKK-mediated p85 phosphorylation and PI3K feedback inhibition.


Assuntos
Quinase I-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Inanição/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Linhagem Celular , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Sequência Conservada , Retroalimentação Fisiológica , Fibroblastos/metabolismo , Humanos , Quinase I-kappa B/genética , Leucina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Fosfotirosina/metabolismo , Domínios de Homologia de src
7.
PLoS One ; 5(2): e9428, 2010 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-20195534

RESUMO

BACKGROUND: Activation of the transcription factor NF-kappaB by cytokines is rapid, mediated through the activation of the IKK complex with subsequent phosphorylation and degradation of the inhibitory IkappaB proteins. The IKK complex is comprised of two catalytic subunits, IKKalpha and IKKbeta, and a regulatory protein known as NEMO. Using cells from mice that are genetically deficient in IKKbeta or IKKalpha, or using a kinase inactive mutant of IKKbeta, it has been proposed that IKKbeta is critical for TNF-induced IkappaB phosphorylation/degradation through the canonical pathway while IKKalpha has been shown to be involved in the non-canonical pathway for NF-kappaB activation. These conclusions have led to a focus on development of IKKbeta inhibitors for potential use in inflammatory disorders and cancer. METHODOLOGY: Analysis of NF-kappaB activation in response to TNF in MEFs reveals that IKKbeta is essential for efficient phosphorylation and subsequent degradation of IkappaB alpha, yet IKKalpha contributes to the NF-kappaB activation response in these cells as measured via DNA binding assays. In HeLa cells, both IKKalpha and IKKbeta contribute to IkappaB alpha phosphorylation and NF-kappaB activation. A kinase inactive mutant of IKKbeta, which has been used as evidence for the critical importance of IKKbeta in TNF-induced signaling, blocks activation of NF-kappaB induced by IKKalpha, even in cells that are deficient in IKKbeta. CONCLUSIONS: These results demonstrate the importance of IKKalpha in canonical NF-kappaB activation, downstream of cytokine treatment of cells. The experiments suggest that IKKalpha will be a therapeutic target in inflammatory disorders.


Assuntos
Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/farmacologia , Animais , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Sondas de DNA/genética , Sondas de DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HeLa , Humanos , Quinase I-kappa B/genética , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Interferência de RNA
8.
Mol Cell Biol ; 28(16): 5061-70, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18541671

RESUMO

Glutamate is a critical neurotransmitter of the central nervous system (CNS) and also an important regulator of cell survival and proliferation. The binding of glutamate to metabotropic glutamate receptors induces signal transduction cascades that lead to gene-specific transcription. The transcription factor NF-kappaB, which regulates cell proliferation and survival, is activated by glutamate; however, the glutamate receptor-induced signaling pathways that lead to this activation are not clearly defined. Here we investigate the glutamate-induced activation of NF-kappaB in glial cells of the CNS, including primary astrocytes. We show that glutamate induces phosphorylation, nuclear accumulation, DNA binding, and transcriptional activation function of glial p65. The glutamate-induced activation of NF-kappaB requires calcium-dependent IkappaB kinase alpha (IKKalpha) and IKKbeta activation and induces p65-IkappaBalpha dissociation in the absence of IkappaBalpha phosphorylation or degradation. Moreover, glutamate-induced IKK preferentially targets the phosphorylation of p65 but not IkappaBalpha. Finally, we show that the ability of glutamate to activate NF-kappaB requires cross-coupled signaling with the epidermal growth factor receptor. Our results provide insight into a glutamate-induced regulatory pathway distinct from that described for cytokine-induced NF-kappaB activation and have important implications with regard to both normal glial cell physiology and pathogenesis.


Assuntos
Receptores ErbB/metabolismo , Receptores de Glutamato/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Fenilacetatos/farmacologia , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
9.
Genes Dev ; 22(11): 1490-500, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18519641

RESUMO

While NF-kappaB is considered to play key roles in the development and progression of many cancers, the mechanisms whereby this transcription factor is activated in cancer are poorly understood. A key oncoprotein in a variety of cancers is the serine-threonine kinase Akt, which can be activated by mutations in PI3K, by loss of expression/activity of PTEN, or through signaling induced by growth factors and their receptors. A key effector of Akt-induced signaling is the regulatory protein mTOR (mammalian target of rapamycin). We show here that mTOR downstream from Akt controls NF-kappaB activity in PTEN-null/inactive prostate cancer cells via interaction with and stimulation of IKK. The mTOR-associated protein Raptor is required for the ability of Akt to induce NF-kappaB activity. Correspondingly, the mTOR inhibitor rapamycin is shown to suppress IKK activity in PTEN-deficient prostate cancer cells through a mechanism that may involve dissociation of Raptor from mTOR. The results provide insight into the effects of Akt/mTOR-dependent signaling on gene expression and into the therapeutic action of rapamycin.


Assuntos
Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Regulação da Expressão Gênica , Células HeLa , Humanos , Masculino , Neoplasias da Próstata , Proteínas/metabolismo , Proteína Regulatória Associada a mTOR , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Células Tumorais Cultivadas
10.
J Immunol ; 178(8): 4803-10, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17404261

RESUMO

Autoimmunity results from a breakdown in tolerance mechanisms that regulate autoreactive lymphocytes. We recently showed that during innate immune responses, secretion of IL-6 by dendritic cells (DCs) maintained autoreactive B cells in an unresponsive state. In this study, we describe that TLR4-activated DCs from lupus-prone mice are defective in repressing autoantibody secretion, coincident with diminished IL-6 secretion. Reduced secretion of IL-6 by MRL/lpr DCs reflected diminished synthesis and failure to sustain IL-6 mRNA production. This occurred coincident with lack of NF-kappaB and AP-1 DNA binding and failure to sustain IkappaBalpha phosphorylation. Analysis of individual mice showed that some animals partially repressed Ig secretion despite reduced levels of IL-6. This suggests that in addition to IL-6, DCs secrete other soluble factor(s) that regulate autoreactive B cells. Collectively, the data show that MRL/lpr mice are defective in DC/IL-6-mediated tolerance, but that some individuals maintain the ability to repress autoantibody secretion by an alternative mechanism.


Assuntos
Células Dendríticas/fisiologia , Imunoglobulinas/biossíntese , Interleucina-6/fisiologia , Lúpus Eritematoso Sistêmico/imunologia , Animais , Autoanticorpos/biossíntese , DNA/metabolismo , Tolerância Imunológica , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Camundongos Transgênicos , NF-kappa B/metabolismo , Receptores de Antígenos de Linfócitos B/fisiologia , Receptor 4 Toll-Like/fisiologia
11.
J Biol Chem ; 281(18): 12521-5, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16517600

RESUMO

Phosphorylation of histone H3 protein at serine 10 is an important step in chromatin remodeling during transcriptional transactivation. IkappaB kinase-alpha (IKK-alpha) and Mitogen- and Stress-activated protein Kinases 1 and 2 (MSK1/2) have been shown to play key roles in the transcriptional regulation of immediate early genes such as c-fos. Interestingly, IKK-alpha and MSK1/2 have also been implicated as histone H3-Ser10 kinases. In this work, we have shown that MSK1/2 are required for epidermal growth factor (EGF)-induced, but not tumor necrosis factor-induced, histone H3-Ser10 phosphorylation, both globally and at specific promoters. Consistent with this, MSK1/2 are required for optimal immediate early c-fos transcription in response to EGF potentially through control of both H3-Ser10 and promoter-associated cAMP-response element-binding protein phosphorylation. Furthermore, MSK1/2 control EGF-induced IkappaB alpha promoter H3-Ser10 phosphorylation in the absence of elevated transcription. These studies demonstrate the existence of pathway-specific mechanisms to control histone H3-Ser10 phosphorylation and gene expression.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Histonas/química , Proteínas Quinases S6 Ribossômicas 90-kDa/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , AMP Cíclico/metabolismo , Fibroblastos/metabolismo , Proteínas I-kappa B/metabolismo , Camundongos , Inibidor de NF-kappaB alfa , Fosforilação , Regiões Promotoras Genéticas , Serina/química
12.
Genes Dev ; 20(2): 225-35, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16384933

RESUMO

While Bcl-3 expression in cancer was originally thought to be limited to B-cell lymphomas with a 14;19 chromosomal translocation, more recent evidence indicates that expression of this presumptive oncoprotein is significantly more widespread in cancer. However, an oncogenic role for Bcl-3 has not been clearly identified. Experiments presented here indicate that Bcl-3 is inducible by DNA damage and is required for the induction of Hdm2 gene expression and the suppression of persistent p53 activity. Furthermore, constitutive expression of Bcl-3 suppresses DNA damage-induced p53 activation and inhibits p53-induced apoptosis through a mechanism that is at least partly dependent on the up-regulation of Hdm2. The results provide insight into a mechanism whereby altered expression of Bcl-3 leads to tumorigenic potential. Since Bcl-3 is required for germinal center formation, these results suggest functional similarities with the unrelated Bcl-6 oncoprotein in suppressing potential p53-dependent cell cycle arrest and apoptosis in response to somatic hypermutation and class switch recombination.


Assuntos
Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 3 do Linfoma de Células B , Ciclo Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Embrião de Mamíferos/enzimologia , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Mutação em Linhagem Germinativa , Centro Germinativo/metabolismo , Camundongos , NF-kappa B/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Interferente Pequeno/metabolismo , Recombinação Genética , Fatores de Transcrição , Células Tumorais Cultivadas , Regulação para Cima
13.
Mol Cell Biol ; 25(19): 8444-55, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16166627

RESUMO

Loss of glycogen synthase kinase 3beta (GSK-3beta) in mice results in embryonic lethality via hepatocyte apoptosis. Consistent with this result, cells from these mice have diminished nuclear factor kappaB (NF-kappaB) activity, implying a functional role for GSK-3beta in regulating NF-kappaB. Here, we have explored mechanisms by which GSK-3beta may control NF-kappaB function. We show that cytokine-induced IkappaB kinase activity and subsequent phosphorylation of IkappaBalpha, p105, and p65 are not affected by the absence of GSK-3beta activity. Furthermore, nuclear accumulation of p65 following tumor necrosis factor treatment is unaffected by the loss of GSK-3beta. However, NF-kappaB DNA binding activity is reduced in GSK-3beta null cells and in cells treated with a pharmacological inhibitor of GSK-3. Expression of certain NF-kappaB-regulated genes, such as IkappaBalpha and macrophage inflammatory protein 2, is minimally affected by the absence of GSK-3beta. Conversely, we have identified a subset of NF-kappaB-regulated genes, including those for interleukin-6 and monocyte chemoattractant protein 1, that require GSK-3beta for efficient expression. We show that efficient localization of p65 to the promoter regions of the interleukin-6 and monocyte chemoattractant protein 1 genes following tumor necrosis factor alpha treatment requires GSK-3beta. Therefore, GSK-3beta has profound effects on transcription in a gene-specific manner through a mechanism involving control of promoter-specific recruitment of NF-kappaB.


Assuntos
Quinase 3 da Glicogênio Sintase/fisiologia , NF-kappa B/metabolismo , Transcrição Gênica , Animais , Apoptose , Western Blotting , Linhagem Celular , Núcleo Celular/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CXCL2 , Quimiocinas/metabolismo , Cromatina/metabolismo , Imunoprecipitação da Cromatina , DNA/química , DNA/metabolismo , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta , Imunoprecipitação , Interleucina-6/metabolismo , Intestinos/citologia , Camundongos , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Transfecção , Fator de Necrose Tumoral alfa/metabolismo
14.
Genes Dev ; 18(23): 2905-15, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15545623

RESUMO

The c-Jun NH(2)-terminal kinase (JNK) has been implicated in both cell death and survival responses to different stimuli. Here we reexamine the function of JNK in tumor necrosis factor (TNF)-stimulated cell death using fibroblasts isolated from wild-type, Mkk4(-/-) Mkk7(-/-), and Jnk1(-/-) Jnk2(-/-) mice. We demonstrate that JNK can act to suppress TNF-stimulated apoptosis. However, we find that JNK can also potentiate TNF-stimulated necrosis by increasing the production of reactive oxygen species (ROS). Together, these data indicate that JNK can shift the balance of TNF-stimulated cell death from apoptosis to necrosis. Increased necrosis may represent a contributing factor in stress-induced inflammatory responses mediated by JNK.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa/fisiologia , Animais , Morte Celular/fisiologia , MAP Quinase Quinase 4 , Camundongos
15.
J Biol Chem ; 279(30): 31183-9, 2004 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-15155743

RESUMO

Mitogenic activation of expression of immediate-early genes, such as c-fos, is controlled through signal-induced phosphorylation of constitutively bound transcription factors that is correlated with a nucleosomal response that involves inducible chromatin modifications, such as histone phosphorylation and acetylation. Here we have explored a potential role for the transcription factor NF-kappaB and its associated signaling components in mediating induction of c-fos gene expression downstream of epidermal growth factor (EGF)-dependent signaling. Here we show that EGF treatment of quiescent fibroblast does not induce the classical pathway of NF-kappaB activation through IkappaB kinase (IKK)-directed IkappaBalpha phosphorylation. Interestingly, efficient induction of c-fos transcription requires IKKalpha, one of the subunits of the IkappaB kinase complex. The NF-kappaB subunit, p65/RelA, is found constitutively associated with the c-fos promoter, and knock-out of this transcription factor significantly reduces c-fos gene expression. Importantly, EGF induces the recruitment of IKKalpha to the c-fos promoter to regulate promoter-specific histone H3 Ser(10) phosphorylation in a manner that is independent of p65/RelA. Collectively, our data demonstrate that IKKalpha and p65/RelA contribute significantly to EGF-induced c-fos gene expression in a manner independent of the classical, IkappaBalpha degradation, p65/RelA nuclear accumulation response pathway.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Genes fos , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sequência de Bases , Células Cultivadas , Primers do DNA/genética , Expressão Gênica/genética , Histonas/química , Histonas/metabolismo , Quinase I-kappa B , Proteínas I-kappa B/metabolismo , Camundongos , Camundongos Knockout , Inibidor de NF-kappaB alfa , Fosforilação , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA
16.
Genes Dev ; 17(19): 2368-73, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-14522944

RESUMO

Cytokines, such as tumor necrosis factor-alpha (TNFalpha), potently inhibit the differentiation of mesenchymal cells and down-regulate the expression of Sox9 and MyoD, transcription factors required for chondrocyte and myocyte development. Previously, we demonstrated that NF-kappaB controls TNFalpha-mediated suppression of myogenesis through a mechanism involving MyoD mRNA down-regulation. Here, we show that NF-kappaB also suppresses chondrogenesis and destabilizes Sox9 mRNA levels. Multiple copies of an mRNA cis-regulatory motif (5'-ACUACAG-3') are necessary and sufficient for NF-kappaB-mediated Sox9 and MyoD down-regulation. Thus, in response to cytokine signaling, NF-kappaB modulates the differentiation of mesenchymal-derived cell lineages via RNA sequence-dependent, posttranscriptional down-regulation of key developmental regulators.


Assuntos
Diferenciação Celular/fisiologia , Mesoderma/citologia , NF-kappa B/metabolismo , Interferência de RNA , Animais , Sequência de Bases , Células Cultivadas , Condrócitos/citologia , Condrócitos/fisiologia , Sequência Conservada , Regulação para Baixo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Mesoderma/metabolismo , Camundongos , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , NF-kappa B/genética , RNA Mensageiro/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição SOX9 , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Nature ; 423(6940): 659-63, 2003 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-12789343

RESUMO

NF-kappaB is a principal transcriptional regulator of diverse cytokine-mediated processes and is tightly controlled by the IkappaB kinase complex (IKK-alpha/beta/gamma). IKK-beta and IKK-gamma are critical for cytokine-induced NF-kappaB function, whereas IKK-alpha is thought to be involved in other regulatory pathways. However, recent data suggest a role for IKK-alpha in NF-kappaB-dependent gene expression in response to cytokine treatment. Here we demonstrate nuclear accumulation of IKK-alpha after cytokine exposure, suggesting a nuclear function for this protein. Consistent with this, chromatin immunoprecipitation (ChIP) assays reveal that IKK-alpha was recruited to the promoter regions of NF-kappaB-regulated genes on stimulation with tumour-necrosis factor-alpha. Notably, NF-kappaB-regulated gene expression is suppressed by the loss of IKK-alpha and this correlates with a complete loss of gene-specific phosphorylation of histone H3 on serine 10, a modification previously associated with positive gene expression. Furthermore, we show that IKK-alpha can directly phosphorylate histone H3 in vitro, suggesting a new substrate for this kinase. We propose that IKK-alpha is an essential regulator of NF-kappaB-dependent gene expression through control of promoter-associated histone phosphorylation after cytokine exposure. These findings provide additional insight into the role of the IKK complex in NF-kappaB-regulated gene expression.


Assuntos
Regulação da Expressão Gênica , NF-kappa B/metabolismo , Nucleossomos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Fibroblastos , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Quinase I-kappa B , Proteínas I-kappa B/genética , Interleucina-6/genética , Camundongos , Inibidor de NF-kappaB alfa , NF-kappa B/química , NF-kappa B/genética , Nucleossomos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição RelA , Fator de Necrose Tumoral alfa/farmacologia
18.
J Biol Chem ; 278(5): 2963-8, 2003 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-12433922

RESUMO

The transcription factor NF-kappa B has been shown to be predominantly cytoplasmically localized in the absence of an inductive signal. Stimulation of cells with inflammatory cytokines such as tumor necrosis factor alpha or interleukin-1 induces the degradation of I kappa B, the inhibitor of NF-kappa B, allowing nuclear accumulation of NF-kappa B and regulation of specific gene expression. The degradation of I kappa B is controlled initially by phosphorylation induced by the I kappa B kinase, which leads to ubiquitination and subsequent proteolysis of the inhibitor by the proteasome. We report here that NF-kappa B and I kappa B alpha (but not I kappa B beta) are also localized in the mitochondria. Stimulation of cells with tumor necrosis factor alpha leads to the phosphorylation of mitochondrial I kappa B alpha and its subsequent degradation by a nonproteasome-dependent pathway. Interestingly, expression of the mitochondrially encoded cytochrome c oxidase III and cytochrome b mRNAs were reduced by cytokine treatment of cells. Inhibition of activation of mitochondrial NF-kappa B by expression of the superrepressor form of I kappa B alpha inhibited the loss of expression of both cytochrome c oxidase III and cytochrome b mRNA. These data indicate that the NF-kappa B regulatory pathway exists in mitochondria and that NF-kappa B can negatively regulate mitochondrial mRNA expression.


Assuntos
Proteínas I-kappa B/análise , Mitocôndrias Hepáticas/ultraestrutura , Mitocôndrias/ultraestrutura , NF-kappa B/análise , NF-kappa B/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas I-kappa B/genética , Imuno-Histoquímica , Microscopia Eletrônica , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/metabolismo , Inibidor de NF-kappaB alfa , NF-kappa B/antagonistas & inibidores , RNA Mensageiro/genética , Ratos , Fator de Necrose Tumoral alfa/farmacologia , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA