Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
2.
Res Sq ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38978561

RESUMO

Cardiovascular disease remains the leading cause of death worldwide. A primary driver of cardiovascular mortality is ischemic heart failure, a form of cardiac dysfunction that can develop in patients who survive myocardial infarction. Acute cardiac damage triggers robust changes in the spleen with rapid migration of immune cells from the spleen to the heart. Activating this "cardio-splenic" axis contributes to progressive cardiac dysfunction. The cardio-splenic axis has, therefore, been identified as a promising therapeutic target to prevent or treat heart failure. However, our understanding of the precise mechanisms by which specific immune cells contribute to adverse cardiac remodeling within the cardio-splenic axis remains limited. Here, we show that splenic B cells contribute to the development of heart failure via MHC II-mediated antigen presentation. We found that the adoptive transfer of splenic B cells from mice with ischemic heart failure promoted adverse cardiac remodeling and splenic inflammatory changes in naïve recipient mice. Based on single-cell RNA sequencing analysis of splenic B cells from mice with ischemic heart failure, we hypothesized that B cells contributed to adverse cardiac remodeling through antigen presentation by MHC II molecules. This mechanism was confirmed using transgenic mice with B cell-specific MHC II deletion, and by analyzing circulating B cells from humans who experienced myocardial infarction. Our results broaden our understanding of B lymphocyte biology, reshape current models of immune activation in response to myocardial injury, and point towards MHC II-mediated signaling in B cells as a novel and specific therapeutic target in chronic heart failure.

3.
Br J Pharmacol ; 181(20): 3993-4011, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38922847

RESUMO

BACKGROUND AND PURPOSE: Inhibitors of voltage-gated sodium channels (NaVs) are important anti-epileptic drugs, but the contribution of specific channel isoforms is unknown since available inhibitors are non-selective. We aimed to create novel, isoform selective inhibitors of Nav channels as a means of informing the development of improved antiseizure drugs. EXPERIMENTAL APPROACH: We created a series of compounds with diverse selectivity profiles enabling block of NaV1.6 alone or together with NaV1.2. These novel NaV inhibitors were evaluated for their ability to inhibit electrically evoked seizures in mice with a heterozygous gain-of-function mutation (N1768D/+) in Scn8a (encoding NaV1.6) and in wild-type mice. KEY RESULTS: Pharmacologic inhibition of NaV1.6 in Scn8aN1768D/+ mice prevented seizures evoked by a 6-Hz shock. Inhibitors were also effective in a direct current maximal electroshock seizure assay in wild-type mice. NaV1.6 inhibition correlated with efficacy in both models, even without inhibition of other CNS NaV isoforms. CONCLUSIONS AND IMPLICATIONS: Our data suggest NaV1.6 inhibition is a driver of efficacy for NaV inhibitor anti-seizure medicines. Sparing the NaV1.1 channels of inhibitory interneurons did not compromise efficacy. Selective NaV1.6 inhibitors may provide targeted therapies for human Scn8a developmental and epileptic encephalopathies and improved treatments for idiopathic epilepsies.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.6 , Convulsões , Bloqueadores do Canal de Sódio Disparado por Voltagem , Animais , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Convulsões/tratamento farmacológico , Camundongos , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Masculino , Mutação com Ganho de Função , Anticonvulsivantes/farmacologia , Camundongos Endogâmicos C57BL
4.
bioRxiv ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38766182

RESUMO

Cardiovascular disease remains the leading cause of death worldwide. A primary driver of cardiovascular mortality is ischemic heart failure, a form of cardiac dysfunction that can develop in patients who survive myocardial infarction. Acute cardiac damage triggers robust changes in the spleen with rapid migration of immune cells from the spleen to the heart. Activating this "cardio-splenic" axis contributes to progressive cardiac dysfunction. The cardio-splenic axis has, therefore, been identified as a promising therapeutic target to prevent or treat heart failure. However, our understanding of the precise mechanisms by which specific immune cells contribute to adverse cardiac remodeling within the cardio-splenic axis remains limited. Here, we show that splenic B cells contribute to the development of heart failure via MHC II-mediated antigen presentation. We found that the adoptive transfer of splenic B cells from mice with ischemic heart failure promoted adverse cardiac remodeling and splenic inflammatory changes in naïve recipient mice. Based on single-cell RNA sequencing analysis of splenic B cells from mice with ischemic heart failure, we hypothesized that B cells contributed to adverse cardiac remodeling through antigen presentation by MHC II molecules. This mechanism was confirmed using transgenic mice with B cell-specific MHC II deletion, and by analyzing circulating B cells from humans who experienced myocardial infarction. Our results broaden our understanding of B lymphocyte biology, reshape current models of immune activation in response to myocardial injury, and point towards MHC II-mediated signaling in B cells as a novel and specific therapeutic target in chronic heart failure.

5.
Front Immunol ; 15: 1327372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736889

RESUMO

Introduction: Growing evidence from animal models indicates that the myocardium hosts a population of B cells that play a role in the development of cardiomyopathy. However, there is minimal data on human myocardial B cells in the context of cardiomyopathy. Methods: We integrated single-cell and single-nuclei datasets from 45 healthy human hearts, 70 hearts with dilated cardiomyopathy (DCM), and 8 hearts with arrhythmogenic right ventricular cardiomyopathy (ARVC). Interactions between B cells and other cell types were investigated using the CellChat Package. Differential gene expression analysis comparing B cells across conditions was performed using DESeq2. Pathway analysis was performed using Ingenuity, KEGG, and GO pathways analysis. Results: We identified 1,100 B cells, including naive B cells and plasma cells. Cells showed an extensive network of interactions within the healthy myocardium that included outgoing signaling to macrophages, T cells, endothelial cells, and pericytes, and incoming signaling from endothelial cells, pericytes, and fibroblasts. This niche relied on ECM-receptor, contact, and paracrine interactions; and changed significantly in the context of cardiomyopathy, displaying disease-specific features. Differential gene expression analysis showed that in the context of DCM both naive and plasma B cells upregulated several pathways related to immune activation, including upregulation of oxidative phosphorylation, upregulation of leukocyte extravasation, and, in naive B cells, antigen presentation. Discussion: The human myocardium contains naive B cells and plasma cells, integrated into a diverse and dynamic niche that has distinctive features in healthy, DCM, and ARVC. Naive myocardial-associated B cells likely contribute to the pathogenesis of human DCM.


Assuntos
Displasia Arritmogênica Ventricular Direita , Linfócitos B , Cardiomiopatia Dilatada , Miocárdio , Humanos , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/genética , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Miocárdio/metabolismo , Miocárdio/imunologia , Miocárdio/patologia , Masculino , Feminino , Comunicação Celular/imunologia , Perfilação da Expressão Gênica , Pessoa de Meia-Idade , Adulto , Transcriptoma , Regulação da Expressão Gênica
6.
ACS Chem Neurosci ; 15(6): 1169-1184, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38359277

RESUMO

Voltage-gated sodium channel (NaV) inhibitors are used to treat neurological disorders of hyperexcitability such as epilepsy. These drugs act by attenuating neuronal action potential firing to reduce excitability in the brain. However, all currently available NaV-targeting antiseizure medications nonselectively inhibit the brain channels NaV1.1, NaV1.2, and NaV1.6, which potentially limits the efficacy and therapeutic safety margins of these drugs. Here, we report on XPC-7724 and XPC-5462, which represent a new class of small molecule NaV-targeting compounds. These compounds specifically target inhibition of the NaV1.6 and NaV1.2 channels, which are abundantly expressed in excitatory pyramidal neurons. They have a > 100-fold molecular selectivity against NaV1.1 channels, which are predominantly expressed in inhibitory neurons. Sparing NaV1.1 preserves the inhibitory activity in the brain. These compounds bind to and stabilize the inactivated state of the channels thereby reducing the activity of excitatory neurons. They have higher potency, with longer residency times and slower off-rates, than the clinically used antiseizure medications carbamazepine and phenytoin. The neuronal selectivity of these compounds is demonstrated in brain slices by inhibition of firing in cortical excitatory pyramidal neurons, without impacting fast spiking inhibitory interneurons. XPC-5462 also suppresses epileptiform activity in an ex vivo brain slice seizure model, whereas XPC-7224 does not, suggesting a possible requirement of Nav1.2 inhibition in 0-Mg2+- or 4-AP-induced brain slice seizure models. The profiles of these compounds will facilitate pharmacological dissection of the physiological roles of NaV1.2 and NaV1.6 in neurons and help define the role of specific channels in disease states. This unique selectivity profile provides a new approach to potentially treat disorders of neuronal hyperexcitability by selectively downregulating excitatory circuits.


Assuntos
Epilepsia , Canais de Sódio Disparados por Voltagem , Humanos , Neurônios/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Epilepsia/metabolismo , Encéfalo/metabolismo , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Potenciais de Ação/fisiologia
7.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293212

RESUMO

Introduction: Growing evidence from animal models indicates that the myocardium hosts a population of B cells that play a role in the development of cardiomyopathy. However, there is minimal data on human myocardial B cells in the context of cardiomyopathy. Methods: We integrated single-cell and single-nuclei datasets from 45 healthy human hearts, 70 hearts with dilated cardiomyopathy (DCM), and 8 hearts with Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC). Interactions between B cells and other cell types were investigated using the CellChat Package. Differential gene expression analysis comparing B cells across conditions was performed using DESeq2. Pathway analysis was performed using Ingenuity, KEGG, and GO pathways analysis. Results: We identified 1,100 B cells, including naive B cells and plasma cells. B cells showed an extensive network of interactions within the healthy myocardium that included outgoing signaling to macrophages, T cells, endothelial cells, and pericytes, and incoming signaling from endothelial cells, pericytes, and fibroblasts. This niche relied on ECM-receptor, contact, and paracrine interaction; and changed significantly in the context of cardiomyopathy, displaying disease-specific features. Differential gene expression analysis showed that in the context of DCM both naive and plasma B cells upregulated several pathways related to immune activation, including upregulation of oxidative phosphorylation, upregulation of leukocyte extravasation, and, in naive B cells, antigen presentation. Discussion: The human myocardium contains naive B cells and plasma cells, integrated into a diverse and dynamic niche that has distinctive features in healthy myocardium, DCM, and ARVC. Naive myocardial-associated B cells likely contribute to the pathogenesis of human DCM.

8.
iScience ; 26(10): 107759, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736052

RESUMO

Diabetes is associated with a significantly elevated risk of heart failure. However, despite extensive efforts to characterize the phenotype of the diabetic heart, the molecular and cellular protagonists that underpin cardiac pathological remodeling in diabetes remain unclear, with a notable paucity of data regarding the impact of diabetes on non-myocytes within the heart. Here we aimed to define key differences in cardiac non-myocytes between spontaneously type-2 diabetic (db/db) and healthy control (db/h) mouse hearts. Single-cell transcriptomic analysis revealed a concerted diabetes-induced cellular response contributing to cardiac remodeling. These included cell-specific activation of gene programs relating to fibroblast hyperplasia and cell migration, and dysregulation of pathways involving vascular homeostasis and protein folding. This work offers a new perspective for understanding the cellular mediators of diabetes-induced cardiac pathology, and pathways that may be targeted to address the cardiac complications associated with diabetes.

9.
JACC Heart Fail ; 11(9): 1231-1242, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37542511

RESUMO

BACKGROUND: The pathophysiology of peripartum cardiomyopathy (PPCM) and its distinctive biological features remain incompletely understood. High-throughput serum proteomic profiling, a powerful tool to gain insights into the pathophysiology of diseases at a systems biology level, has never been used to investigate PPCM relative to nonischemic cardiomyopathy. OBJECTIVES: The aim of this study was to characterize the pathophysiology of PPCM through serum proteomic analysis. METHODS: Aptamer-based proteomic analysis (SomaScan 7K) was performed on serum samples from women with PPCM (n = 67), women with nonischemic nonperipartum cardiomyopathy (NPCM) (n = 31), and age-matched healthy peripartum and nonperipartum women (n = 10 each). Serum samples were obtained from the IPAC (Investigation of Pregnancy-Associated Cardiomyopathy) and IMAC2 (Intervention in Myocarditis and Acute Cardiomyopathy) studies. RESULTS: Principal component analysis revealed unique clustering of each patient group (P for difference <0.001). Biological pathway analyses of differentially measured proteins in PPCM relative to NPCM, before and after normalization to pertinent healthy controls, highlighted specific dysregulation of inflammatory pathways in PPCM, including the upregulation of the cholesterol metabolism-related anti-inflammatory pathway liver-X receptor/retinoid-X receptor (LXR/RXR) (P < 0.01, Z-score 1.9-2.1). Cardiac recovery by 12 months in PPCM was associated with the downregulation of pro-inflammatory pathways and the upregulation of LXR/RXR, and an additional RXR-dependent pathway involved in the regulation of inflammation and metabolism, peroxisome proliferator-activated receptor α/RXRα signaling. CONCLUSIONS: Serum proteomic profiling of PPCM relative to NPCM and healthy controls indicated that PPCM is a distinct disease entity characterized by the unique dysregulation of inflammation-related pathways and cholesterol metabolism-related anti-inflammatory pathways. These findings provide insight into the pathophysiology of PPCM and point to novel potential therapeutic targets.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Complicações Cardiovasculares na Gravidez , Transtornos Puerperais , Gravidez , Humanos , Feminino , Período Periparto , Proteômica , Transtornos Puerperais/terapia , Complicações Cardiovasculares na Gravidez/terapia , Inflamação , Colesterol
10.
Biomed Pharmacother ; 165: 115173, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453200

RESUMO

Nav1.1 is an important pharmacological target as this voltage-gated sodium channel is involved in neurological and cardiac syndromes. Channel activators are actively sought to try to compensate for haploinsufficiency in several of these pathologies. Herein we used a natural source of new peptide compounds active on ion channels and screened for drugs capable to inhibit channel inactivation as a way to compensate for decreased channel function. We discovered that JzTx-34 is highly active on Nav1.1 and subsequently performed a full structure-activity relationship investigation to identify its pharmacophore. These experiments will help interpret the mechanism of action of this and formerly identified peptides as well as the future identification of new peptides. We also reveal structural determinants that make natural ICK peptides active against Nav1.1 challenging to synthesize. Altogether, the knowledge gained by this study will help facilitate the discovery and development of new compounds active on this critical ion channel target.


Assuntos
Peptídeos , Canais de Sódio Disparados por Voltagem , Humanos , Peptídeos/farmacologia , Peptídeos/química , Relação Estrutura-Atividade
11.
J Immunol ; 210(9): 1198-1207, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37068299

RESUMO

The mammalian heart is characterized by the presence of striated myocytes, which allow continuous rhythmic contraction from early embryonic development until the last moments of life. However, the myocardium contains a significant contingent of leukocytes from every major class. This leukocyte pool includes both resident and nonresident immune cells. Over recent decades, it has become increasingly apparent that the heart is intimately sensitive to immune signaling and that myocardial leukocytes exhibit an array of critical functions, both in homeostasis and in the context of cardiac adaptation to injury. Here, we systematically review current knowledge of all major leukocyte classes in the heart, discussing their functions in health and disease. We also highlight the connection between the myocardium, immune cells, lymphoid organs, and both local and systemic immune responses.


Assuntos
Miocárdio , Miócitos Cardíacos , Animais , Leucócitos , Transdução de Sinais , Mamíferos
12.
J Pharmacol Exp Ther ; 386(1): 4-14, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36958846

RESUMO

Divalent metal transporter 1 (DMT1) cotransports ferrous iron and protons and is the primary mechanism for uptake of nonheme iron by enterocytes. Inhibitors are potentially useful as therapeutic agents to treat iron overload disorders such as hereditary hemochromatosis or ß-thalassemia intermedia, provided that inhibition can be restricted to the duodenum. We used a calcein quench assay to identify human DMT1 inhibitors. Dimeric compounds were made to generate more potent compounds with low systemic exposure. Direct block of DMT1 was confirmed by voltage clamp measurements. The lead compound, XEN602, strongly inhibits dietary nonheme iron uptake in both rats and pigs yet has negligible systemic exposure. Efficacy is maintained for >2 weeks in a rat subchronic dosing assay. Doses that lowered iron content in the spleen and liver by >50% had no effect on the tissue content of other divalent cations except for cobalt. XEN602 represents a powerful pharmacological tool for understanding the physiologic function of DMT1 in the gut. SIGNIFICANCE STATEMENT: This report introduces methodology to develop potent, gut-restricted inhibitors of divalent metal transporter 1 (DMT1) and identifies XEN602 as a suitable compound for in vivo studies. We also report novel animal models to quantify the inhibition of dietary uptake of iron in both rodents and pigs. This research shows that inhibition of DMT1 is a promising means to treat iron overload disorders.


Assuntos
Sobrecarga de Ferro , Humanos , Ratos , Animais , Suínos , Sobrecarga de Ferro/tratamento farmacológico , Ferro/metabolismo , Transporte Biológico , Proteínas de Ligação ao Ferro/metabolismo , Modelos Animais
13.
Elife ; 112022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35234610

RESUMO

NBI-921352 (formerly XEN901) is a novel sodium channel inhibitor designed to specifically target NaV1.6 channels. Such a molecule provides a precision-medicine approach to target SCN8A-related epilepsy syndromes (SCN8A-RES), where gain-of-function (GoF) mutations lead to excess NaV1.6 sodium current, or other indications where NaV1.6 mediated hyper-excitability contributes to disease (Gardella and Møller, 2019; Johannesen et al., 2019; Veeramah et al., 2012). NBI-921352 is a potent inhibitor of NaV1.6 (IC500.051 µM), with exquisite selectivity over other sodium channel isoforms (selectivity ratios of 756 X for NaV1.1, 134 X for NaV1.2, 276 X for NaV1.7, and >583 Xfor NaV1.3, NaV1.4, and NaV1.5). NBI-921352is a state-dependent inhibitor, preferentially inhibiting inactivatedchannels. The state dependence leads to potent stabilization of inactivation, inhibiting NaV1.6 currents, including resurgent and persistent NaV1.6 currents, while sparing the closed/rested channels. The isoform-selective profile of NBI-921352 led to a robust inhibition of action-potential firing in glutamatergic excitatory pyramidal neurons, while sparing fast-spiking inhibitory interneurons, where NaV1.1 predominates. Oral administration of NBI-921352 prevented electrically induced seizures in a Scn8a GoF mouse,as well as in wild-type mouse and ratseizure models. NBI-921352 was effective in preventing seizures at lower brain and plasma concentrations than commonly prescribed sodium channel inhibitor anti-seizure medicines (ASMs) carbamazepine, phenytoin, and lacosamide. NBI-921352 waswell tolerated at higher multiples of the effective plasma and brain concentrations than those ASMs. NBI-921352 is entering phase II proof-of-concept trials for the treatment of SCN8A-developmental epileptic encephalopathy (SCN8A-DEE) and adult focal-onset seizures.


Assuntos
Epilepsia , Canal de Sódio Disparado por Voltagem NAV1.6 , Animais , Mutação com Ganho de Função , Camundongos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neurônios/fisiologia , Ratos , Sódio , Bloqueadores dos Canais de Sódio/farmacologia
14.
STAR Protoc ; 2(4): 100866, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34647038

RESUMO

This protocol features parallel isolation of myocytes and non-myocytes from murine hearts. It was designed with considerations for (1) time required to extract cardiac cells, (2) cell viability, and (3) protocol scalability. Here, a peristaltic pump and 3D-printed elements are combined to perfuse the heart with enzymes to dissociate cells. Myocytes and non-myocytes extracted using this protocol are separated by centrifugation and/or fluorescence-activated cell sorting for use in downstream applications including single-cell omics or other bio-molecular analyses. For complete details on the use and execution of this protocol, please refer to McLellan et al. (2020).


Assuntos
Separação Celular/métodos , Miocárdio/citologia , Miócitos Cardíacos , Análise de Célula Única/métodos , Animais , Técnicas de Cultura de Células , Células Cultivadas , Genômica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/classificação , Miócitos Cardíacos/citologia
16.
Cardiovasc Diabetol ; 20(1): 116, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074290

RESUMO

BACKGROUND: Diabetes is associated with a significantly elevated risk of cardiovascular disease and its specific pathophysiology remains unclear. Recent studies have changed our understanding of cardiac cellularity, with cellular changes accompanying diabetes yet to be examined in detail. This study aims to characterise the changes in the cardiac cellular landscape in murine diabetes to identify potential cellular protagonists in the diabetic heart. METHODS: Diabetes was induced in male FVB/N mice by low-dose streptozotocin and a high-fat diet for 26-weeks. Cardiac function was measured by echocardiography at endpoint. Flow cytometry was performed on cardiac ventricles as well as blood, spleen, and bone-marrow at endpoint from non-diabetic and diabetic mice. To validate flow cytometry results, immunofluorescence staining was conducted on left-ventricles of age-matched mice. RESULTS: Mice with diabetes exhibited hyperglycaemia and impaired glucose tolerance at endpoint. Echocardiography revealed reduced E:A and e':a' ratios in diabetic mice indicating diastolic dysfunction. Systolic function was not different between the experimental groups. Detailed examination of cardiac cellularity found resident mesenchymal cells (RMCs) were elevated as a result of diabetes, due to a marked increase in cardiac fibroblasts, while smooth muscle cells were reduced in proportion. Moreover, we found increased levels of Ly6Chi monocytes in both the heart and in the blood. Consistent with this, the proportion of bone-marrow haematopoietic stem cells were increased in diabetic mice. CONCLUSIONS: Murine diabetes results in distinct changes in cardiac cellularity. These changes-in particular increased levels of fibroblasts-offer a framework for understanding how cardiac cellularity changes in diabetes. The results also point to new cellular mechanisms in this context, which may further aid in development of pharmacotherapies to allay the progression of cardiomyopathy associated with diabetes.


Assuntos
Diabetes Mellitus Experimental/complicações , Cardiomiopatias Diabéticas/etiologia , Fibroblastos/patologia , Miocárdio/patologia , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Diástole , Dieta Hiperlipídica , Fibroblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Masculino , Camundongos , Monócitos/metabolismo , Monócitos/patologia , Miocárdio/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Estreptozocina , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
17.
Bioorg Med Chem Lett ; 45: 128133, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34044121

RESUMO

We describe the synthesis and biological evaluation of a series of novel aryl sulfonamides that exhibit potent inhibition of NaV1.5. Unlike local anesthetics that are currently used for treatment of Long QT Syndrome 3 (LQT-3), the most potent compound (-)-6 in this series shows high selectivity over hERG and other cardiac ion channels and has a low brain to plasma ratio to minimize CNS side effects. Compound (-)-6 is also effective inshortening prolonged action potential durations (APDs) in a pharmacological model of LQT-3 syndrome in pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Unlike most aryl sulfonamide NaV inhibitors that bind to the channel voltage sensors, these NaV1.5 inhibitors bind to the local anesthetic binding site in the central pore of the channel.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Sulfonamidas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
19.
J Med Chem ; 64(6): 2953-2966, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33682420

RESUMO

Nav1.7 is an extensively investigated target for pain with a strong genetic link in humans, yet in spite of this effort, it remains challenging to identify efficacious, selective, and safe inhibitors. Here, we disclose the discovery and preclinical profile of GDC-0276 (1) and GDC-0310 (2), selective Nav1.7 inhibitors that have completed Phase 1 trials. Our initial search focused on close-in analogues to early compound 3. This resulted in the discovery of GDC-0276 (1), which possessed improved metabolic stability and an acceptable overall pharmacokinetics profile. To further derisk the predicted human pharmacokinetics and enable QD dosing, additional optimization of the scaffold was conducted, resulting in the discovery of a novel series of N-benzyl piperidine Nav1.7 inhibitors. Improvement of the metabolic stability by blocking the labile benzylic position led to the discovery of GDC-0310 (2), which possesses improved Nav selectivity and pharmacokinetic profile over 1.


Assuntos
Azetidinas/farmacologia , Benzamidas/farmacologia , Descoberta de Drogas , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Sulfonamidas/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Animais , Azetidinas/química , Azetidinas/farmacocinética , Benzamidas/química , Benzamidas/farmacocinética , Células Cultivadas , Células HEK293 , Humanos , Piperidinas/química , Piperidinas/farmacocinética , Piperidinas/farmacologia , Ratos Sprague-Dawley , Sulfonamidas/química , Sulfonamidas/farmacocinética , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética
20.
Front Cell Dev Biol ; 9: 798588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34988086

RESUMO

Huwentoxin-IV (HwTx-IV), a peptide discovered in the venom of the Chinese bird spider Cyriopagopus schmidti, has been reported to be a potent antinociceptive compound due to its action on the genetically-validated NaV1.7 pain target. Using this peptide for antinociceptive applications in vivo suffers from one major drawback, namely its negative impact on the neuromuscular system. Although studied only recently, this effect appears to be due to an interaction between the peptide and the NaV1.6 channel subtype located at the presynaptic level. The aim of this work was to investigate how HwTx-IV could be modified in order to alter the original human (h) NaV1.7/NaV1.6 selectivity ratio of 23. Nineteen HwTx-IV analogues were chemically synthesized and tested for their blocking effects on the Na+ currents flowing through these two channel subtypes stably expressed in cell lines. Dose-response curves for these analogues were generated, thanks to the use of an automated patch-clamp system. Several key amino acid positions were targeted owing to the information provided by earlier structure-activity relationship (SAR) studies. Among the analogues tested, the potency of HwTx-IV E4K was significantly improved for hNaV1.6, leading to a decreased hNaV1.7/hNaV1.6 selectivity ratio (close to 1). Similar decreased selectivity ratios, but with increased potency for both subtypes, were observed for HwTx-IV analogues that combine a substitution at position 4 with a modification of amino acid 1 or 26 (HwTx-IV E1G/E4G and HwTx-IV E4K/R26Q). In contrast, increased selectivity ratios (>46) were obtained if the E4K mutation was combined to an additional double substitution (R 26A/Y33W) or simply by further substituting the C-terminal amidation of the peptide by a carboxylated motif, linked to a marked loss of potency on hNaV1.6 in this latter case. These results demonstrate that it is possible to significantly modulate the selectivity ratio for these two channel subtypes in order to improve the potency of a given analogue for hNaV1.6 and/or hNaV1.7 subtypes. In addition, selective analogues for hNaV1.7, possessing better safety profiles, were produced to limit neuromuscular impairments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA